51 research outputs found

    Plasma Lipidomics Profiling Reveals Biomarkers for Papillary Thyroid Cancer Diagnosis

    Get PDF
    The objective of this study was to identify potential biomarkers and possible metabolic pathways of malignant and benign thyroid nodules through lipidomics study. A total of 47 papillary thyroid carcinomas (PTC) and 33 control check (CK) were enrolled. Plasma samples were collected for UPLC-Q-TOF MS system detection, and then OPLS-DA model was used to identify differential metabolites. Based on classical statistical methods and machine learning, potential biomarkers were characterized and related metabolic pathways were identified. According to the metabolic spectrum, 13 metabolites were identified between PTC group and CK group, and a total of five metabolites were obtained after further screening. Its metabolic pathways were involved in glycerophospholipid metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, glycosylphosphatidylinositol (GPI)—anchor biosynthesis, Phosphatidylinositol signaling system and the metabolism of arachidonic acid metabolism. The metabolomics method based on PROTON nuclear magnetic resonance (NMR) had great potential for distinguishing normal subjects from PTC. GlcCer(d14:1/24:1), PE-NME (18:1/18:1), SM(d16:1/24:1), SM(d18:1/15:0), and SM(d18:1/16:1) can be used as potential serum markers for the diagnosis of PTC

    Effects of Diatomite Contents on Microstructure, Microhardness, Bioactivity and Biocompatibility of Gradient Bioceramic Coating Prepared by Laser Cladding

    No full text
    Biometallic materials are widely used in medicine because of excellent mechanical properties. However, biometallic materials are limited in the application of biomaterials due to their lack of bioactivity. To solve this problem, a gradient bioceramic coating doped with diatomite (DE) was successfully fabricated on the surface of Ti6Al4V alloy by using the broadband-laser cladding process to improve the bioactivity of metal materials. As well as the DE contents on the microstructure, microhardness, bioactivity and biocompatibility were investigated. The experimental results demonstrate that the addition of moderate amounts of DE is effective in reducing the number of cracks. The X-ray diffraction (XRD) results reveal that the bioceramic coating doped with DE mainly consists of CaTiO3, hydroxyapatite (HA), tricalcium phosphate (TCP) and silicate, and that the amount of HA and TCP in the coating reached maximum when the bioceramic coating was doped with 10wt% DE. The bioceramic coating doped with 10wt% DE has favorable ability to deposit bone-like apatite. These results indicate that the addition of DE can improve cracking sensibility, bioactivity and biocompatibility of the coating

    Effects of Diatomite Contents on Microstructure, Microhardness, Bioactivity and Biocompatibility of Gradient Bioceramic Coating Prepared by Laser Cladding

    No full text
    Biometallic materials are widely used in medicine because of excellent mechanical properties. However, biometallic materials are limited in the application of biomaterials due to their lack of bioactivity. To solve this problem, a gradient bioceramic coating doped with diatomite (DE) was successfully fabricated on the surface of Ti6Al4V alloy by using the broadband-laser cladding process to improve the bioactivity of metal materials. As well as the DE contents on the microstructure, microhardness, bioactivity and biocompatibility were investigated. The experimental results demonstrate that the addition of moderate amounts of DE is effective in reducing the number of cracks. The X-ray diffraction (XRD) results reveal that the bioceramic coating doped with DE mainly consists of CaTiO3, hydroxyapatite (HA), tricalcium phosphate (TCP) and silicate, and that the amount of HA and TCP in the coating reached maximum when the bioceramic coating was doped with 10wt% DE. The bioceramic coating doped with 10wt% DE has favorable ability to deposit bone-like apatite. These results indicate that the addition of DE can improve cracking sensibility, bioactivity and biocompatibility of the coating

    Brain Iron Metabolism, Redox Balance and Neurological Diseases

    No full text
    The incidence of neurological diseases, such as Parkinson’s disease, Alzheimer’s disease and stroke, is increasing. An increasing number of studies have correlated these diseases with brain iron overload and the resulting oxidative damage. Brain iron deficiency has also been closely linked to neurodevelopment. These neurological disorders seriously affect the physical and mental health of patients and bring heavy economic burdens to families and society. Therefore, it is important to maintain brain iron homeostasis and to understand the mechanism of brain iron disorders affecting reactive oxygen species (ROS) balance, resulting in neural damage, cell death and, ultimately, leading to the development of disease. Evidence has shown that many therapies targeting brain iron and ROS imbalances have good preventive and therapeutic effects on neurological diseases. This review highlights the molecular mechanisms, pathogenesis and treatment strategies of brain iron metabolism disorders in neurological diseases

    Evaluating the screening value of serum light chain ratio, β2 microglobulin, lactic dehydrogenase and immunoglobulin in patients with multiple myeloma using ROC curves.

    No full text
    ObjectiveSeveral laboratory and imaging assays are required to diagnose multiple myeloma (MM). Serum and urine immunofixation electrophoresis are two key assays to diagnose MM, while they have not been extensively utilized in Chinese hospitals. Serum light chain (sLC), β2 microglobulin (β2-MG), lactic dehydrogenase (LDH), and immunoglobulin (Ig) are routinely measured in the majority of Chinese hospitals. Imbalance of sLC ratio (involved light chain/uninvolved light chain) is frequently observed in MM patients. This study aimed to evaluate the screening value of sLC ratio, β2-MG, LDH, and Ig in MM patients using receiver operating characteristic (ROC) curves.MethodsData of 303 suspected MM patients, who were admitted to the Taizhou Central Hospital between March 2015 and July 2021, were retrospectively analyzed. In total, 69 patients (MM arm) met the International Myeloma Working Group (IMWG) updated criteria for the diagnosis of MM, while 234 patients were non-MM (non-MM arm). All patients' sLC, β2-MG, LDH, and Ig were measured using commercially available kits according to the manufacturer's instructions. The ROC curve analysis was employed to assess the screening value of sLC ratio, β2-MG, LDH, creatinine (Cr) and Ig. The statistical analysis was carried out by SPSS 26.0 (IBM, Armonk, NY, USA) and MedCalc 19.0.4 (Ostend, Belgium) software.ResultsThere was no significant difference between the MM and non-MM arms in terms of gender, age and Cr. The median sLC ratio in the MM arm was 11.5333, which was significantly higher than that of 1.9293 in the non-MM arm (PConclusionThe triple combination strategy (sLC ratio, 3.2121; β2-MG, 1.95 mg/L; Ig, 46.4 g/L) is accompanied by remarkable sensitivity and specificity for screening MM in Chinese hospitals

    Discrete Nanoparticle-BSA Conjugates Manipulated by Hydrophobic Interaction

    No full text
    Nanoparticle–protein conjugates are promising probes for biological diagnostics as well as versatile building blocks for nanotechnology. Here we demonstrate a facile method to prepare nanoparticles bearing discrete numbers of BSA simply by physical adsorption and electrophoretic isolation, in which the specific amphiphilic properties of BSA play important roles and the number of adsorbed BSA molecules can also be manipulated by tuning the coating extent of nanoparticles by amphiphilic polymer

    CHIR99021 Maintenance of the Cell Stemness by Regulating Cellular Iron Metabolism

    No full text
    CHIR99021 is an aminopyrimidine derivative, which can efficiently inhibit the activity of glycogen synthesis kinase 3α (GSK-3α) and GSK-3β. As an essential component of stem cell culture medium, it plays an important role in maintaining cell stemness. However, the mechanism of its role is not fully understood. In the present study, we first found that removal of CHIR99021 from embryonic stem cell culture medium reduced iron storage in mouse embryonic stem cells (mESCs). CHIR99021-treated Neuro-2a cells led to an upregulation of ferritin expression and an increase in intracellular iron levels, along with GSK3β inhibition and Wnt/GSK-3β/β-catenin pathway activation. In addition, iron treatment activated the classical Wnt pathway by affecting the expression of β-catenin in the Neuro-2a cells. Our data link the role of iron in the maintenance of cell stemness via the Wnt/GSK-3β/β-catenin signaling pathway, and identify intermediate molecules, including Steap1, Bola2, and Kdm6bos, which may mediate the upregulation of ferritin expression by CHIR99021. These findings reveal novel mechanisms of the maintenance of cell stemness and differentiation and provide a theoretical basis for the development of new strategies in stem cell treatment in disease

    CHIR99021 Maintenance of the Cell Stemness by Regulating Cellular Iron Metabolism

    No full text
    CHIR99021 is an aminopyrimidine derivative, which can efficiently inhibit the activity of glycogen synthesis kinase 3α (GSK-3α) and GSK-3β. As an essential component of stem cell culture medium, it plays an important role in maintaining cell stemness. However, the mechanism of its role is not fully understood. In the present study, we first found that removal of CHIR99021 from embryonic stem cell culture medium reduced iron storage in mouse embryonic stem cells (mESCs). CHIR99021-treated Neuro-2a cells led to an upregulation of ferritin expression and an increase in intracellular iron levels, along with GSK3β inhibition and Wnt/GSK-3β/β-catenin pathway activation. In addition, iron treatment activated the classical Wnt pathway by affecting the expression of β-catenin in the Neuro-2a cells. Our data link the role of iron in the maintenance of cell stemness via the Wnt/GSK-3β/β-catenin signaling pathway, and identify intermediate molecules, including Steap1, Bola2, and Kdm6bos, which may mediate the upregulation of ferritin expression by CHIR99021. These findings reveal novel mechanisms of the maintenance of cell stemness and differentiation and provide a theoretical basis for the development of new strategies in stem cell treatment in disease
    • …
    corecore