25 research outputs found

    DAFNet: A dual attention-guided fuzzy network for cardiac MRI segmentation

    Get PDF
    Background: In clinical diagnostics, magnetic resonance imaging (MRI) technology plays a crucial role in the recognition of cardiac regions, serving as a pivotal tool to assist physicians in diagnosing cardiac diseases. Despite the notable success of convolutional neural networks (CNNs) in cardiac MRI segmentation, it remains a challenge to use existing CNNs-based methods to deal with fuzzy information in cardiac MRI. Therefore, we proposed a novel network architecture named DAFNet to comprehensively address these challenges. Methods: The proposed method was used to design a fuzzy convolutional module, which could improve the feature extraction performance of the network by utilizing fuzzy information that was easily ignored in medical images while retaining the advantage of attention mechanism. Then, a multi-scale feature refinement structure was designed in the decoder portion to solve the problem that the decoder structure of the existing network had poor results in obtaining the final segmentation mask. This structure further improved the performance of the network by aggregating segmentation results from multi-scale feature maps. Additionally, we introduced the dynamic convolution theory, which could further increase the pixel segmentation accuracy of the network. Result: The effectiveness of DAFNet was extensively validated for three datasets. The results demonstrated that the proposed method achieved DSC metrics of 0.942 and 0.885, and HD metricd of 2.50mm and 3.79mm on the first and second dataset, respectively. The recognition accuracy of left ventricular end-diastolic diameter recognition on the third dataset was 98.42%. Conclusion: Compared with the existing CNNs-based methods, the DAFNet achieved state-of-the-art segmentation performance and verified its effectiveness in clinical diagnosis

    Stereoselective Toxicokinetic and Distribution Study on the Hexaconazole Enantiomers in Mice

    No full text
    Hexaconazole (Hex) has been widely used in agricultural products, and its residues may pose a potential risk to human health. However, the metabolic behavior of Hex enantiomers in mammal organisms is still unknown, which is important for evaluating the differences in their toxicity. In this study, the distribution of S-(+)- and R-(−)-Hex in mice was detected by an ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC–MS/MS), and the mechanism differences in the toxicokinetic behavior were analyzed by molecular docking. Good linearities, accuracies, and precisions were achieved for S-(+)- and R-(−)-Hex, with recoveries of 88.7~104.2% and RSDs less than 9.45% in nine tissues of mice. This established method was then used to detect the toxicokinetic of Hex enantiomers in mice after oral administration within 96 h. The results showed that the half-lives of S-(+)- and R-(−)-Hex were 3.07 and 3.71 h in plasma. Hex was mainly accumulated in the liver, followed by the kidneys, brain, lungs, spleen, and heart. The enantiomeric fraction (EF) values of Hex enantiomers in most of the samples were below 1, indicating that S-(+)-Hex decreased faster than its antipode. The molecular docking showed that the binding of S-(+)-Hex with P450arom was much more stable than R-(−)-Hex, which verified the fact that S-(+)-Hex was prefer to decrease in most of the tissues. The results of this study could be helpful for further evaluating the potential toxic risk of Hex enantiomers and for the development and usage of its pure monomer

    VulHunter: Toward Discovering Vulnerabilities in Android Applications

    No full text

    Boosting the Scalability of Botnet Detection Using Adaptive Traffic Sampling

    No full text
    Botnets pose a serious threat to the health of the Internet. Most current network-based botnet detection systems require deep packet inspection (DPI) to detect bots. Because DPI is a computational costly process, such detection systems cannot handle large volumes of traffic typical of large enterprise and ISP networks. In this paper we propose a system that aims to efficiently and effectively identify a small number of suspicious hosts that are likely bots. Their traffic can then be forwarded to DPI-based botnet detection systems for fine-grained inspection and accurate botnet detection. By using a novel adaptive packet sampling algorithm and a scalable spatial-temporal flow correlation approach, our system is able to substantially reduce the volume of network traffic that goes through DPI, thereby boosting the scalability of existing botnet detection systems. We implemented a proof-of-concept version of our system, and evaluated it using real-world legitimate and botnet-related network traces. Our experimental results are very promising and suggest that our approach can enable the deployment of botnet-detection systems in large, high-speed networks

    Prototype aquaporin-based forward osmosis membrane : filtration properties and fouling resistance

    No full text
    The trade-off between water permeability and selectivity is considered as the biggest challenge during membrane fabrication for water purification. The aquaporin (AQP)-based biomimetic membrane has been proven to have both enhanced water permeability and improved selectivity due to the unique features of the AQP protein water channel that permits water molecules and rejects all other components. In this study, a prototype forward osmosis (FO) Aquaporin Inside™ membrane (AIM) was evaluated in terms of intrinsic filtration properties, membrane surface chemistry and fouling behaviour, and compared with a commercial FO membrane. The surface of the prototype AIM appeared to be a modified semi-aromatic polyamide layer instead of fully-aromatic as in other conventional FO products. As a result, compared to the commercial FO membrane, the prototype AIM shows higher water flux and comparable reverse salt flux (RSF) when tested under identical conditions. Due to the lower RSF, the AIM had less organic fouling by a sodium alginate solution when calcium chloride (CaCl2) was used as the draw solution (DS). The membrane integrity of the prototype AIM was maintained after repeated cycles of fouling by high concentration of gypsum and physical cleaning tests. This demonstrates the possibility of using the AIM membrane for treating harsh feed solutions.NRF (Natl Research Foundation, S’pore)EDB (Economic Devt. Board, S’pore

    Soil-transmitted helminth infections and correlated risk factors in preschool and school-aged children in rural Southwest China.

    Get PDF
    We conducted a survey of 1707 children in 141 impoverished rural areas of Guizhou and Sichuan Provinces in Southwest China. Kato-Katz smear testing of stool samples elucidated the prevalence of ascariasis, trichuriasis and hookworm infections in pre-school and school aged children. Demographic, hygiene, household and anthropometric data were collected to better understand risks for infection in this population. 21.2 percent of pre-school children and 22.9 percent of school aged children were infected with at least one of the three types of STH. In Guizhou, 33.9 percent of pre-school children were infected, as were 40.1 percent of school aged children. In Sichuan, these numbers were 9.7 percent and 6.6 percent, respectively. Number of siblings, maternal education, consumption of uncooked meat, consumption of unboiled water, and livestock ownership all correlated significantly with STH infection. Through decomposition analysis, we determined that these correlates made up 26.7 percent of the difference in STH infection between the two provinces. Multivariate analysis showed that STH infection is associated with significantly lower weight-for-age and height-for-age z-scores; moreover, older children infected with STHs lag further behind on the international growth scales than younger children

    Combined Analysis of the Metabolome and Transcriptome to Explore Heat Stress Responses and Adaptation Mechanisms in Celery (Apium graveolens L.)

    No full text
    Celery is an important leafy vegetable that can grow during the cool season and does not tolerate high temperatures. Heat stress is widely acknowledged as one of the main abiotic stresses affecting the growth and yield of celery. The morphological and physiological indices of celery were investigated in the present study to explore the physiological mechanisms in response to high temperatures. Results showed that the antioxidant enzyme activity, proline, relative conductivity, and malondialdehyde were increased, while chlorophyll and the water content of leaves decreased under high-temperature conditions. Short-term heat treatment increased the stomatal conductance to cool off the leaves by transpiration; however, long-term heat treatment led to stomatal closure to prevent leaf dehydration. In addition, high temperature caused a disordered arrangement of palisade tissue and a loose arrangement of spongy tissue in celery leaves. Combined metabolomic and transcriptomic analyses were further used to reveal the regulatory mechanisms in response to heat stress at the molecular level in celery. A total of 1003 differential metabolites were identified and significantly enriched in amino acid metabolism and the tricarboxilic acid (TCA) cycle. Transcriptome sequencing detected 24,264 different genes, including multiple transcription factor families such as HSF, WRKY, MYB, AP2, bZIP, and bHLH family members that were significantly upregulated in response to heat stress, suggesting that these genes were involved in the response to heat stress. In addition, transcriptional and metabolic pathway analyses showed that heat stress inhibited the glycolysis pathway and delayed the TCA cycle but increased the expression of most amino acid synthesis pathways such as proline, arginine, and serine, consistent with the results of physiological indicators. qRT-PCR further showed that the expression pattern was similar to the expression abundance in the transcriptome. The important metabolites and genes in celery that significantly contributed to the response to high temperatures were identified in the present study, which provided the theoretical basis for breeding heat-resistant celery

    Transcriptome Analysis Reveals Important Transcription Factor Families and Reproductive Biological Processes of Flower Development in Celery (Apium graveolens L.)

    No full text
    There are few reports on the reproductive biology of celery, which produces small flowers in a long flowering period. Anther development was analyzed by paraffin sectioning and related genes were examined by transcriptome sequencing and qPCR. The development process was divided into nine stages based on the significant changes in the cell and tissue morphologies. These stages included: archesporial stage, sporogenous cell stage, microspore mother cell stage, dyad and tetrad stage, mononuclear microspore stage, late uninucleate microspore stage, binuclear cell stage, mature pollen stage, and dehiscence stage. A total of 1074 differentially expressed genes were identified by transcriptome sequencing in the early flower bud, middle flower bud, and early flowering period. Functional annotation indicated that these genes were involved in physiological and biochemical processes such as ribosomes metabolism, sugar metabolism, and amino acid metabolism. Transcription factors such as C2H2, AP2/ERF, bZIP, WRKY, and MYB played key regulatory roles in anther development and had different regulatory capabilities at various stages. The expression patterns based on qPCR and transcriptome data of the selected transcription factor genes showed consistency, suggesting that these genes played an important role in different flower development stages. These results provide a theoretical basis for molecular breeding of new celery varieties with pollen abortion. Furthermore, they have enriched research on the reproductive biology of celery and the Apiaceae family

    Univariate and multivariate analyses of risk factors for STH infection (dependent variable) for sampled children in Guizhou and Sichuan, 2010.

    No full text
    <p>NOTE. <sup>a</sup>Categorical data are no. (%) of subjects, continuous data are expressed as mean (SD)</p><p>OR = odds ratio; CI = confidence interval.</p
    corecore