75 research outputs found

    Preoperative lung immune prognostic index predicts survival in patients with pancreatic cancer undergoing radical resection

    Get PDF
    BackgroundLung immune prognostic index (LIPI), a combination of derived neutrophil-to-lymphocyte ratio (dNLR) and lactate dehydrogenase (LDH), is currently attracting considerable interest as a potential prognostic indicator in many malignancies. Our study aimed to investigate the prognostic value of preoperative LIPI in patients with pancreatic ductal adenocarcinoma (PDAC) undergoing radical resection.MethodsWe retrospectively reviewed PDAC patients treated with radical resection from February 2019 to April 2021 at Chinese People's Liberation Army (PLA) general hospital. Based on the cut-off value of dNLR and LDH identified by X-tile, patients were divided into LIPI good and LIPI intermediate/poor group. Kaplan-Meier curve and log-rank test were used to compare the recurrence-free survival (RFS) and overall survival (OS) of the two groups. Univariate and multivariate Cox regression was used to identify the independent prognostic value of LIPI. Subgroup analysis was performed to identify specific population benefited from radical resection.ResultsA total of 205 patients were included and the median RFS and OS was 10.8 and 24.3 months, respectively. Preoperative LIPI intermediate/poor was related to worse RFS and OS (p < 0.05). Preoperative LIPI intermediate/poor, vascular invasion and no adjuvant chemotherapy were indicators of poor OS. Patients with LIPI intermediate/poor had worse OS especially among females and those with adjuvant chemotherapy (p < 0.05). Adjuvant chemotherapy related to better RFS and OS in patients with LIPI good (p < 0.05).ConclusionsPreoperative LIPI intermediate/poor can be an indicator of poor prognosis in patients with PDAC undergoing radical resection. LIPI good could be an effective marker of benefit from adjuvant chemotherapy. Larger studies are warranted for further validation

    Molecular Mechanism Study on the Effect of Nonionic Surfactants with Different Degrees of Ethoxylation on the Wettability of Anthracite

    Get PDF
    A serious risk to the production safety of coal mines is coal dust. The wettability of coal may be successfully changed by adding surfactants to water. However, the creation of very effective dust suppressants is constrained by the lack of knowledge about the microscopic interaction mechanism between coal dust and surfactants. In this investigation, we explained macroscopic experimental phenomena from a molecular perspective. The lauryl polyoxyethylene ethers (C12 (EO)n, n = 7,15,23) were selected. The macromolecular model of anthracite with 55 different components was constructed. Surface tension experiments and hydrophilic lipophilic balance (HLB) calculations showed that the ability of surface hydrophilicization followed the order of C12 (EO)712 \u3e(EO)1512 \u3e(EO)23. Contact angle experiment, XPS and FTIR experiments proved that after the surfactants were adsorbed on the surface of anthracite, the content of carbon element decreased and the content of oxygen element increased, indicating the enhanced surface hydrophilicity. The simulation results showed that with the degree of ethoxylation increases, the adsorption strength of surfactants becomes stronger, and the hydrophilic head group of surfactant on anthracite surface is more uniformly distributed. The greater the degree of ethoxylation, the more powerfully the modified coal surface can bind to water molecules

    Molecular Mechanism Study on the Effect of Nonionic Surfactants with Different Degrees of Ethoxylation on the Wettability of Anthracite

    Get PDF
    A serious risk to the production safety of coal mines is coal dust. The wettability of coal may be successfully changed by adding surfactants to water. However, the creation of very effective dust suppressants is constrained by the lack of knowledge about the microscopic interaction mechanism between coal dust and surfactants. In this investigation, we explained macroscopic experimental phenomena from a molecular perspective. The lauryl polyoxyethylene ethers (C12 (EO)n, n = 7,15,23) were selected. The macromolecular model of anthracite with 55 different components was constructed. Surface tension experiments and hydrophilic lipophilic balance (HLB) calculations showed that the ability of surface hydrophilicization followed the order of C12 (EO)7(EO)15(EO)23. Contact angle experiment, XPS and FTIR experiments proved that after the surfactants were adsorbed on the surface of anthracite, the content of carbon element decreased and the content of oxygen element increased, indicating the enhanced surface hydrophilicity. The simulation results showed that with the degree of ethoxylation increases, the adsorption strength of surfactants becomes stronger, and the hydrophilic head group of surfactant on anthracite surface is more uniformly distributed. The greater the degree of ethoxylation, the more powerfully the modified coal surface can bind to water molecules

    The valproate mediates radio-bidirectional regulation through RFWD3-dependent ubiquitination on Rad51

    Get PDF
    Ionizing radiation (IR) can induce DNA double-strand breaks (DSBs) in tumor cells during radiotherapy (RT), but the efficiency of RT is limited because of the toxicity to normal cells. Locating an adjuvant treatment to alleviate damage in normal cells while sensitizing tumor cells to IR has attracted much attention. Here, using the 7,12-dimethylbenz[α]anthracene (DMBA)-induced malignant transformed MCF10A cells, we found that valproate (VPA), a histone deacetylase inhibitor (HDACi), radiosensitized transformed cells while alleviated IR-induced damage in normal cells at a safe dose (0.5 mM). We further demonstrated the decrease of homologous recombination (HR)-associated Rad51 in the transformed cells was related to the increase of its ubiquitination regulated by E3 ligase RFWD3 for the radiosensitization, which was opposite to normal cells, indicating that RFWD3-dependent ubiquitination on Rad51 was involved in the VPA-mediated radio-bidirectional effect. Through DMBA-transformed breast cancer rat model, VPA at 200 mg/kg radiosensitized tumor tissue cells by increasing RFWD3 and inhibited Rad51, while radioprotected normal tissue cells by decreasing RFWD3 and enhanced Rad51. In addition, we found high-level Rad51 was associated with tumorigenesis and poor prognosis in breast cancer patients. Our findings uncovered RFWD3-dependent Rad51 ubiquitination was the novel mechanism of VPA-mediated radio-bidirectional effect, VPA is a potential adjuvant treatment for tumor RT

    Genome and pan-genome assembly of asparagus bean (Vigna unguiculata ssp. sesquipedialis) reveal the genetic basis of cold adaptation

    Get PDF
    Asparagus bean (Vigna unguiculata ssp. sesquipedialis) is an important cowpea subspecies. We assembled the genomes of Ningjiang 3 (NJ, 550.31 Mb) and Dubai bean (DB, 564.12 Mb) for comparative genomics analysis. The whole-genome duplication events of DB and NJ occurred at 64.55 and 64.81 Mya, respectively, while the divergence between soybean and Vigna occurred in the Paleogene period. NJ genes underwent positive selection and amplification in response to temperature and abiotic stress. In species-specific gene families, NJ is mainly enriched in response to abiotic stress, while DB is primarily enriched in respiration and photosynthesis. We established the pan-genomes of four accessions (NJ, DB, IT97K-499-35 and Xiabao II) and identified 20,336 (70.5%) core genes present in all the accessions, 6,507 (55.56%) variable genes in two individuals, and 2,004 (6.95%) unique genes. The final pan genome is 616.35 Mb, and the core genome is 399.78 Mb. The variable genes are manifested mainly in stress response functions, ABC transporters, seed storage, and dormancy control. In the pan-genome sequence variation analysis, genes affected by presence/absence variants were enriched in biological processes associated with defense responses, immune system processes, signal transduction, and agronomic traits. The results of the present study provide genetic data that could facilitate efficient asparagus bean genetic improvement, especially in producing cold-adapted asparagus bean

    The Synergistic Inhibitions of Tungstate and Molybdate Anions on Pitting Corrosion Initiation for Q235 Carbon Steel in Chloride Solution

    No full text
    In this work, the synergistic inhibitions of tungstate (WO42−) and molybdate (MoO42−) anions, including role and mechanism, on the initiation of pitting corrosion (PC) for Q235 carbon steel in chloride (Cl−) solution were investigated with electrochemical and surface techniques. The pitting potential (Ep) of the Q235 carbon steel in WO42− + MoO42- + Cl− solution was more positive than that in WO42− + Cl− or MoO42− + Cl− solution; at each Ep, both peak potential and affected region of active pitting sites in WO42− + MoO42− + Cl− solution were smaller than those in WO42− + Cl− or MoO42− + Cl− solution. WO42− and MoO42− showed a synergistic role to inhibit the PC initiation of the Q235 carbon steel in Cl− solution, whose mechanism was mainly attributed to the influences of two anions on passive film. Besides iron oxides and iron hydroxides, the passive film of the Q235 carbon steel formed in WO42− + Cl−, MoO42− + Cl−, or WO42− + MoO42− + Cl− solution was also composed of FeWO4 plus Fe2(WO4)3, Fe2(MoO4)3, or Fe2(WO4)3 plus Fe2(MoO4)3, respectively. The film resistance and the defect quantity for Fe2(WO4)3 plus Fe2(MoO4)3 film were larger and smaller than those for FeWO4 plus Fe2(WO4)3 film and Fe2(MoO4)3 film, respectively; for the inhibition of PC initiation, Fe2(WO4)3 plus Fe2(MoO4)3 film provided better corrosion resistance to Q235 carbon steel than FeWO4 plus Fe2(WO4)3 film and Fe2(MoO4)3 film did

    Novel Gas-Sensitive Material for Monitoring the Status of SF<sub>6</sub> Gas-Insulated Switches: Gese Monolayer

    No full text
    Detecting the decomposition components of SF6 insulating gas is recognized as an effective means to monitor the operating status of the SF6 insulating switch. In this paper, the adsorption characteristics of a new two-dimensional material GeSe for five SF6 decomposition gases (SO2, SOF2, SO2F2, H2S and HF) are reported by first-principles simulation. Through the analysis of the change of energy band structure, density of states distribution, and gas desorption time, it is found that GeSe has the potential as a gas-sensitive material for the selective detection of SO2F2, and the computational work in this paper provides theoretical guidance for the development of new gas-sensitive sensors applied in monitoring SF6 insulated switches

    Antihypertensive effect of giant embryo brown rice and pre‐germinated giant embryo brown rice on spontaneously hypertensive rats

    No full text
    “Shangshida NO.5” is a giant embryo mutant resulting from giant embryo gene (GE) dysfunction in “Chao2‐10” rice. Here, we compared the antihypertensive effects of “Chao2‐10” brown rice (C2‐10), “Shangshida NO.5” brown rice (GER), and pre‐germinated “Shangshida NO.5” brown rice (PGER) in spontaneously hypertensive rats (SHR). Male SHR at 6 weeks of age were divided into four groups and were fed with (a) a control diet (control), (b) a 40% C2‐10‐supplemented diet (C2‐10), (c) a 40% GER‐supplemented diet (GER), or (d) a 40% PGER‐supplemented diet (PGER) for 8 weeks, and their physiological and biochemical parameters were measured. The results showed that the C2‐10‐, GER‐, and PGER‐supplemented diets significantly decreased systolic blood pressure (SBP) and diastolic blood pressure (DBP) during the experiment. At the end of the experimental period, the SBP and DBP of the C2‐10, GER, and PGER groups were 7.6, 23.3, and 31.1 mmHg and 9.8, 21.1, and 29 mmHg lower than those in the control group, respectively, suggesting the GER and PGER diets were better able to inhibit blood pressure elevation than the C2‐10 diet. The serum creatinine levels in the C2‐10, GER, and PGER groups and the blood urea nitrogen content in the PGER group were significantly lower than those of the control group, indicating that C2‐10‐, GER‐, and especially PGER‐supplemented diets improved renal function. In addition, the antioxidant activity of the C2‐10 group and especially of the GER and PGER groups also improved. The above results suggest that “Shangshida NO.5” rice, particularly pre‐germinated rice, is a good dietary supplement for preventing the development of hypertension
    corecore