25 research outputs found

    Theoretical Study of the Structure and Property of Ionic Liquids as Corrosion Inhibitor

    Get PDF
    Three sets of ionic liquids such as 1-alkyl-3-methylimidazole chloride [Cnmim]Cl, 1-alkyl-3-methylimidazolium acetate [Cnmim]Ac and 1-octyl-3-methylimidazole salt [Omim]Y (n = 2, 4, 6, 8, and Y = Cl, BF4, HSO4, Ac and TFO) were used as corrosion inhibitor medium for corrosion protection of carbon steel. Electronic structures and reactivity of these ionic liquids, surface energy and electronic structures of the iron surface were systematically analyzed by density functional theory. By increasing the alkyl chain length of the [Cnmim]Cl and [Cnmim]Ac systems, the lowest unoccupied molecular orbital energy (ELUMO), the highest occupied molecular orbital energy (EHOMO), the softness (S) and polarizability (α) increased gradually, whereas electronegativity (χ), energy gap (ΔE), hardness (η), dipole moment (μ)and electrophilic index (ω) gradually decreased. For the [Omim]Y system, the structure parameters of ionic liquids are quite different, and only the polarizability (α) decreases gradually by increasing the length of the alkyl chain. The results show that inhibition is mainly [Cnmim]+ cations of the [Cnmim]Cl system, and the order of inhibition efficiency follows as [C2mim]Cl  [C6mim]Ac > [C4mim]Ac > [C2mim]Ac. For the [Omim]Y system, [Xmim]+ cations and anions (BF4−, HSO4−, Ac−, TfO−) have inhibition effect, and the order of inhibition efficiency is [Omim]TfO > [Omim]Ac > [Omim]HSO4 > [Omim]BF4 > [Omim]Cl

    Performance of a nonempirical density functional on molecules and hydrogen-bonded complexes

    Get PDF
    Recently, Tao and Mo derived a meta-generalized gradient approximation functional based on a model exchange-correlation hole. In this work, the performance of this functional is assessed on standard test sets, using the 6-311++G(3df,3pd) basis set. These test sets include 223 G3/99 enthalpies of formation, 99 atomization energies, 76 barrier heights, 58 electron affinities, 8 proton affinities, 96 bond lengths, 82 harmonic vibrational frequencies, 10 hydrogen-bonded molecular complexes, and 22 atomic excitation energies. Our calculations show that the Tao-Mo functional can achieve high accuracy for most properties considered, relative to the local spin-density approximation, Perdew-Burke-Ernzerhof, and Tao-Perdew-Staroverov-Scuseria functionals. In particular, it yields the best accuracy for proton affinities, harmonic vibrational frequencies, hydrogen-bond dissociation energies and bond lengths, and atomic excitation energies

    Impaired Resting-State Functional Integrations within Default Mode Network of Generalized Tonic-Clonic Seizures Epilepsy

    Get PDF
    Generalized tonic-clonic seizures (GTCS) are characterized by unresponsiveness and convulsions, which cause complete loss of consciousness. Many recent studies have found that the ictal alterations in brain activity of the GTCS epilepsy patients are focally involved in some brain regions, including thalamus, upper brainstem, medial prefrontal cortex, posterior midbrain regions, and lateral parietal cortex. Notably, many of these affected brain regions are the same and overlap considerably with the components of the so-called default mode network (DMN). Here, we hypothesize that the brain activity of the DMN of the GTCS epilepsy patients are different from normal controls, even in the resting state. To test this hypothesis, we compared the DMN of the GTCS epilepsy patients and the controls using the resting state functional magnetic resonance imaging. Thirteen brain areas in the DMN were extracted, and a complete undirected weighted graph was used to model the DMN for each participant. When directly comparing the edges of the graph, we found significant decreased functional connectivities within the DMN of the GTCS epilepsy patients comparing to the controls. As for the nodes of the graph, we found that the degree of some brain areas within the DMN was significantly reduced in the GTCS epilepsy patients, including the anterior medial prefrontal cortex, the bilateral superior frontal cortex, and the posterior cingulate cortex. Then we investigated into possible mechanisms of how GTCS epilepsy could cause the reduction of the functional integrations of DMN. We suggested the damaged functional integrations of the DMN in the GTCS epilepsy patients even during the resting state, which could help to understand the neural correlations of the impaired consciousness of GTCS epilepsy patients

    Performance and Mechanism of Alkylimidazolium Ionic Liquids as Corrosion Inhibitors for Copper in Sulfuric Acid Solution

    No full text
    The addition of corrosion inhibitors is an economic and environmental protection method to prevent the corrosion of copper. The adsorption, performance, and mechanism of three 1-alkyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4, [HMIM]HSO4, and [OMIM]HSO4) ionic liquids (ILs) on the copper surface in 0.5 M H2SO4 solutions were studied by quantum chemical calculation, quantitative structure-activity relationship (QSAR), and molecular dynamics simulation. It is found that the main reactive site is located on the imidazolium ring (especially the C2, N4, and N7 groups). When the alkyl chain of the imidazolium ring is increasing, the molecular reactivity of the ILs and the interaction between the ILs inhibitor and copper surface are enhanced. The imidazole ring of the ILs tends to be adsorbed on Cu (111) surface in parallel through physical adsorption. The order of adsorption energy is [Bmim]HSO4 < [Hmim]HSO4 < [OMIM]HSO4, which is in agreement with the experimental order of corrosion efficiency. On the imidazole ring, the interaction between the copper surface and the C atom is greater than that between the copper surface and the N atom. It is found that ILs addition can hinder the diffusion of corrosion particles, reduce the number density of corrosion particles and slow down the corrosion rate. The order of inhibition ability of three ILs is [Bmim]HSO4 < [Hmim]HSO4 < [OMIM]HSO4,which agree well with experimental results. A reliable QSAR correlation between the inhibition corrosion efficiency and molecular reactivity parameters of the ILs was established

    The Effects of Benzene on the Structure and Properties of Triethylamine Hydrochloride/Chloroaluminate

    No full text
    The effects of benzene (C6H6) on the radial distribution function, coordination number, spatial distribution function, physical and chemical properties such as density, viscosity, conductivity and transport properties of triethylamine hydrochloride /chloroaluminate ([Et3NH] Cl/AlCl3) ionic liquid were studied by first principle and molecular dynamics simulation. The stable geometry and electronic properties of benzene and ionic liquids, as well as their optimized adsorption on Cu (111) surface were obtained. The density, viscosity and conductivity obtained agreed well with the experimental values. It is found that the adsorption of cations, anions and benzene on Cu (111) surface is physical adsorption, and the adsorption capacity is [Et3NH] > C6H6 > Al2Cl7−. With the increase of benzene concentration, the density of the system decreases gradually, the interaction between cations and anions gradually weakens, resulting in the decrease of viscosity, the enhancement of diffusion and the increase of conductivity. Since the diffusion and adsorption capacity of benzene are greater than that of electroactive ion of Al2Cl7−, benzene would be easier to adsorb on the protruding part of the electrode surface, so as to reduce the effective surface area of the cathode, slow down the reduction speed of Al2Cl7− on the cathode surface and increase the over-potential, so the grain refined deposition layers can be obtained in electrodeposition

    First Principle Analysis on Pyridine Amide Derivatives’ Adsorption Behavior on the Pt (111) Surface

    No full text
    The reactivity and adsorption behavior of three pyridine amide additives (Nicotinamide, Pyridine-2-formamide and Pyridine-4-formamide) on the Pt (111) surface was studied by First principle methods. The quantum chemical calculations of molecular reactivity show that the frontier orbitals of the three additives are distributed around the pyridine ring, oxygen atom of carbonyl and nitrogen atom of amino, and the nucleophilic and electrophilic active centers are located on the nitrogen atoms of pyridine ring, oxygen atom of carbonyl and nitrogen atom of amino. All three molecules were adsorbed with the chemical adsorption on the Pt (111) surface, and the order of adsorption was Nicotinamide > Pyridine-2-formamide > Pyridine-4-formamide. The C and N atoms of three derivatives forms C-Pt and N-Pt bonds with the Pt atoms of the Pt (111) surface, which makes derivatives stably adsorb on the Pt surface and form a protective film. The protective film inhibits the diffusion of atoms to the surface of the growth center, so as to inhibit the formation of dendrite and obtain a smooth aluminum deposition layer

    The Effects of Benzene on the Structure and Properties of Triethylamine Hydrochloride/Chloroaluminate

    No full text
    The effects of benzene (C6H6) on the radial distribution function, coordination number, spatial distribution function, physical and chemical properties such as density, viscosity, conductivity and transport properties of triethylamine hydrochloride /chloroaluminate ([Et3NH] Cl/AlCl3) ionic liquid were studied by first principle and molecular dynamics simulation. The stable geometry and electronic properties of benzene and ionic liquids, as well as their optimized adsorption on Cu (111) surface were obtained. The density, viscosity and conductivity obtained agreed well with the experimental values. It is found that the adsorption of cations, anions and benzene on Cu (111) surface is physical adsorption, and the adsorption capacity is [Et3NH] > C6H6 > Al2Cl7−. With the increase of benzene concentration, the density of the system decreases gradually, the interaction between cations and anions gradually weakens, resulting in the decrease of viscosity, the enhancement of diffusion and the increase of conductivity. Since the diffusion and adsorption capacity of benzene are greater than that of electroactive ion of Al2Cl7−, benzene would be easier to adsorb on the protruding part of the electrode surface, so as to reduce the effective surface area of the cathode, slow down the reduction speed of Al2Cl7− on the cathode surface and increase the over-potential, so the grain refined deposition layers can be obtained in electrodeposition

    Energetic Study of Clusters and Reaction Barrier Heights from Efficient Semilocal Density Functionals

    No full text
    The accurate first-principles prediction of the energetic properties of molecules and clusters from efficient semilocal density functionals is of broad interest. Here we study the performance of a non-empirical Tao-Mo (TM) density functional on binding energies and excitation energies of titanium dioxide and water clusters, as well as reaction barrier heights. To make a comparison, a combination of the TM exchange part with the TPSS (Tao–Perdew–Staroverov–Scuseria) correlation functional—called TMTPSS—is also included in this study. Our calculations show that the best binding energies of titanium dioxide are predicted by PBE0 (Perdew–Burke–Ernzerhof hybrid functional), TM, and TMTPSS with nearly the same accuracy, while B3LYP (Beck’s three-parameter exchange part with Lee-Yang-Parr correlation), TPSS, and PBE (Perdew–Burke–Ernzerhof) yield larger mean absolute errors. For excitation energies of titanium and water clusters, PBE0 and B3LYP are the most accurate functionals, outperforming the performance of semilocal functionals due to the nonlocality problem suffered by the latter. Nevertheless, TMTPSS and TM functionals are still good accurate semilocal methods, improving upon the commonly-used TPSS and PBE functionals. We also find that the best reaction barrier heights are predicted by PBE0 and B3LYP, thanks to the nonlocality incorporated into these two hybrid functionals, but TMTPSS and TM are obviously more accurate than SCAN (Strongly Constrained and Appropriately Normed), TPSS, and PBE, suggesting the good performance of TM and TMTPSS for physically different systems and properties

    Effect of Mechanical Activation on the Leaching Process of Rare Earth Metal Yttrium in Deep Eutectic Solvents

    No full text
    Deep eutectic solvents (DESs) have the potential to be a lixiviant for the selective processing of metal because of their versatile complexation properties. In this study, the leaching behavior of rare-earth carbonate before and after mechanical activation in chloride–urea–malonic acid, the deep eutectic solvents (ChCl-urea-MA DESs) were investigated. Leaching experiments were employed to investigate the effects of reaction temperature and activation time on the leaching efficiency of the metal, yttrium, in DESs. The leaching efficiency of yttrium was determined to be 85.2% when the activation time was 60 min, the leaching temperature was 80 °C and the leaching time was 12 h. The findings showed that mechanical activation increased the yttrium leaching efficiency from 48.61 to 88.37% by lowering the particle size and increasing the contact area of the reaction. The investigation of the yttrium leaching kinetics revealed that, after mechanical grinding, the apparent activation energy of rare-earth carbonate decreased from 83.88 kJ∙mol−1 to 37.4 kJ∙mol−1, and the leaching process of the sample changed from controlled by chemical reaction to controlled by diffusion in the solid product layer. Mechanical activation combined with DESs was proposed as an eco-friendly, sustainable, and effective alternative to conventional mineral acid leaching and solvent, with advantages such as moderate conditions, reusability of the DESs, and no additional wastewater produced. The findings of the study show this method is a good way to recycle rare-earth metals

    Effect of Mechanical Activation on the Leaching Process of Rare Earth Metal Yttrium in Deep Eutectic Solvents

    No full text
    Deep eutectic solvents (DESs) have the potential to be a lixiviant for the selective processing of metal because of their versatile complexation properties. In this study, the leaching behavior of rare-earth carbonate before and after mechanical activation in chloride–urea–malonic acid, the deep eutectic solvents (ChCl-urea-MA DESs) were investigated. Leaching experiments were employed to investigate the effects of reaction temperature and activation time on the leaching efficiency of the metal, yttrium, in DESs. The leaching efficiency of yttrium was determined to be 85.2% when the activation time was 60 min, the leaching temperature was 80 °C and the leaching time was 12 h. The findings showed that mechanical activation increased the yttrium leaching efficiency from 48.61 to 88.37% by lowering the particle size and increasing the contact area of the reaction. The investigation of the yttrium leaching kinetics revealed that, after mechanical grinding, the apparent activation energy of rare-earth carbonate decreased from 83.88 kJ∙mol−1 to 37.4 kJ∙mol−1, and the leaching process of the sample changed from controlled by chemical reaction to controlled by diffusion in the solid product layer. Mechanical activation combined with DESs was proposed as an eco-friendly, sustainable, and effective alternative to conventional mineral acid leaching and solvent, with advantages such as moderate conditions, reusability of the DESs, and no additional wastewater produced. The findings of the study show this method is a good way to recycle rare-earth metals
    corecore