
THE JOURNAL OF CHEMICAL PHYSICS 145, 234306 (2016)

Performance of a nonempirical density functional on molecules
and hydrogen-bonded complexes

Yuxiang Mo,1 Guocai Tian,1,2 Roberto Car,3 Viktor N. Staroverov,4 Gustavo E. Scuseria,5
and Jianmin Tao1,a)
1Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
2State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science
and Technology, Kunming 650093, China
3Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
4Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
5Department of Chemistry, Rice University, Houston, Texas 77005, USA

(Received 18 July 2016; accepted 22 November 2016; published online 19 December 2016)

Recently, Tao and Mo derived a meta-generalized gradient approximation functional based on a model
exchange-correlation hole. In this work, the performance of this functional is assessed on standard test
sets, using the 6-311++G(3df,3pd) basis set. These test sets include 223 G3/99 enthalpies of formation,
99 atomization energies, 76 barrier heights, 58 electron affinities, 8 proton affinities, 96 bond lengths,
82 harmonic vibrational frequencies, 10 hydrogen-bonded molecular complexes, and 22 atomic exci-
tation energies. Our calculations show that the Tao-Mo functional can achieve high accuracy for most
properties considered, relative to the local spin-density approximation, Perdew-Burke-Ernzerhof, and
Tao-Perdew-Staroverov-Scuseria functionals. In particular, it yields the best accuracy for proton affini-
ties, harmonic vibrational frequencies, hydrogen-bond dissociation energies and bond lengths, and
atomic excitation energies. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971853]

I. INTRODUCTION

Kohn-Sham density functional theory (DFT)1 provides
an efficient description of the electronic structure of molecules
and solids. In this theory, only the exchange-correlation energy
component accounting for all many-body effects must be
approximated as a functional of the electron density. Owing to
the rapid development of exchange-correlation density func-
tional approximations,2–25 DFT has achieved a high degree of
sophistication and become a standard technique of electronic
structure calculations. However, despite considerable progress
in the development of density functional approximations, there
remains a strong demand for new density functionals with
higher accuracy and wider applicability.26,27

Depending on the type of their ingredients, density func-
tionals can be divided into two broad categories: semilo-
cal and nonlocal. Semilocal functionals employ local or
semilocal information, such as the electron density, density
gradient, and the Kohn-Sham kinetic energy density, to cal-
culate the exchange-correlation energy, while nonlocal func-
tionals23,28–31 make use of additional information beyond that
of semilocal DFT, such as the exact exchange energy den-
sity. Nonlocal functionals provide more accurate description
than semilocal approximations for problems in which nonlo-
cality is important (e.g., band gaps, excitation energy, charge
transfer, and reaction barriers), but they are computationally
more expensive and more difficult to develop and imple-
ment. Semilocal DFT can be further divided into three sub-
categories: local spin-density approximation (LSDA)32 which

a)Author to whom correspondence should be addressed. Electronic mail:
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uses the local spin-densities as inputs, generalized-gradient
approximations (GGAs)3,6,33–37 such as the Perdew-Burke-
Ernzerhof (PBE) functional, which take the spin-density gradi-
ents as additional inputs, and meta-GGAs9,20,38 with the kinetic
energy densities as additional inputs. The functional form of
GGAs is quite restrictive, but the form of meta-GGAs is more
flexible. This flexibility allows meta-GGAs to satisfy more
exact constraints and thus leads to improvement over GGA in
accuracy and applicability. For example, a GGA can satisfy
the exact second-order gradient expansion,18 but only a meta-
GGA9,20,24,39 can simultaneously recover the correct fourth-
order term. A GGA cannot be one-electron self-interaction
free, but a meta-GGA correlation can.

Recently, two of the present authors (JT and YM) derived
a meta-GGA functional based on an exchange-correlation
hole, referred to hereafter as the Tao-Mo (TM) functional.39

The exchange part of the hole was obtained from the den-
sity matrix expansion (DME) under an appropriate coordinate
transformation, while the correlation part was taken from the
Constantin-Perdew-Tao correlation hole40 with a modifica-
tion aiming to improve the low-density or strong-interaction
limit of the correlation energy. This functional follows the
non-empiricism philosophy of the widely used Tao-Perdew-
Staroverov-Scuseria (TPSS) meta-GGA,9 without relying on
any empirical fitting, except for the exchange energy of the
ground-state H atom.

In this paper, we present a comprehensive evaluation of
the performance of the TM functional on a variety of proper-
ties of molecules and hydrogen-bonded complexes. We show
that TM can achieve high accuracy for most properties consid-
ered here, among non-empirical density functionals proposed
in recent years. For some properties and hydrogen-bonded
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complexes, it even gives the smallest error, in comparison with
the benchmark data reported in the literature. Our assessment
suggests that TM functional is a promising tool for electronic
structure calculations.

II. METHODOLGY

Because the exchange and correlation parts of a den-
sity functional have different coordinate41 and spin42,43 scal-
ing properties, they are usually approximated separately. In
the development of an exchange functional, one only needs
to consider spin-unpolarized densities. The spin-polarized
form is then obtained by the exact spin-scaling relationship,42

Ex
[
n↑, n↓

]
= Ex

[
2n↑

] /
2+Ex

[
2n↓

] /
2. For the correlation part,

the exact spin-dependence is known only in the high-density
limit.44 Therefore, in the development of a correlation func-
tional, one has to consider its spin-dependence for any spin
polarization.

For spin-unpolarized densities, the exchange part of the
TM meta-GGA functional39 takes the form

Ex [n] =
∫

d3r n εunif
x (n) Fx(n,∇n, τ) , (1)

where n is the electron density, εunif
x (n) is the exchange

energy per electron of the uniform electron gas given by
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energy density, and Fx is the enhancement factor. The inhomo-
geneity effects enter the meta-GGA functional via the enhance-
ment factor, which was derived from the exchange hole via the
DME and finally corrected to satisfy the fourth-order gradi-
ent expansion of the exchange energy for the slowly varying
density.39 The slowly varying correction (SC) may not be so
significant for molecular systems, but it is important for solids
and surfaces, because the typical valence electron density of
bulk solids is slowly varying. The TM exchange enhancement
factor is expressed as
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where q̃ = 3τ/2kF
2n − 9/20 − p/12, p = s2 = (|∇n|/2kFn)2,

kF = (3π2n)1/3, and τW = |∇n|2/8n is the von Weizsäcker
kinetic energy density. FDME

x is the exchange enhancement
factor obtained from the DME. It is given by
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where τunif = 3(3π2)2/3n5/3/10 is the Thomas-Fermi kinetic

energy density, f =
[
1 + 10(70y/27) + βy2

]1/10
, y= (2λ

−1)2p, λ = 0.6866, and β = 79.873. In iso-orbital regions (e.g.,
core and density tail regions), w→ 1 so that Fx→FDME

x , while
in the slowly varying density limit, w→ 0 and Fx→FSC

x .
Therefore, we may interpret TM exchange as an interpolation
between rapidly varying and slowly varying densities, similar
to the TPSS exchange.9

The correlation part of the TM functional was developed
by modifying the TPSS correlation approximation in the low-
density (strong-interaction) limit. It takes the same form as
that of TPSS, but replaces C (ζ , ξ) of Eq. (14) of Ref. 9 with
the simpler form,

C (ζ , ξ) =
0.1ζ2 + 0.32ζ4

{
1 + ξ2

[
(1 + ζ)−4/3 + (1 − ζ)−4/3

] /
2

}4
(6)

where ζ = (n↑ − n↓)/n is the relative spin polarization and
ξ = |∇ζ |

/
2kF .35,45 In the low-density limit, the exchange-

correlation energy should become spin-independent, because
two charged particles far apart from each other interact
via the Coulomb interaction, regardless of whether they are
bosons or fermions.46 For example, in the dissociation limit
of the H2 molecule, each H atom can be spin-up or spin-
down, without changing the total energy of the dissociated
molecule. This limit was used to construct the TPSS cor-
relation functional. It has also been recently employed to
improve the TPSS correlation for the one-electron Gaus-
sian density, leading to the TM correlation functional (see
Fig. 2 of Ref. 39 for the comparison between TM and
TPSS). Like the TPSS correlation, the TM correlation sat-
isfies two other exact constraints: (i) it recovers the slowly
varying gradient expansion,44 and (ii) it is one-electron
self-interaction-free.

A nice feature of the TM functional is that the under-
lying exchange-correlation hole is known. The exchange
part of the hole was derived from the DME, while the
correlation part takes the form proposed by Constantin,
Perdew, and Tao,40 with the TPSS correlation energy den-
sity replaced by the TM correlation energy density. (The
modification of the TPSS correlation energy is equiva-
lent to the modification of the TPSS correlation hole,
because the latter can be reverse-engineered40 from the
former.)

In the present work, we focus on the performance of
the TM functional on energetic and structural properties of
molecules. The tested properties include standard enthalpies
of formation, atomization energies, reaction barrier heights,
electron affinities, proton affinities, bond lengths, vibra-
tional frequencies, H-bond dissociation energies and bond
lengths, and atomic excitation energies. In order for the
assessment to be reliable, we adopted the large basis set
6-311++G(3df,3pd) for most of our calculations. All inte-
grals were evaluated on ultrafine grids (Grid = UltraFine).
All molecular geometry optimizations were performed with
the Opt = Tight option. The TM functional was imple-
mented by modifying the Gaussian 09 program.47 We use
the mean error (ME), the mean absolute error (MAE), and



234306-3 Mo et al. J. Chem. Phys. 145, 234306 (2016)

the largest individual deviations to characterize and compare
the accuracy of various density functionals. Calculated prop-
erties of individual species are available in the supplementary
material.

III. RESULTS AND DISCUSSION
A. Thermochemical properties

In the present work, we assess the accuracy of the TM
functional on thermochemical properties of the G3/99 and
W4-08 test sets. The G3/99 test set was originally intro-
duced by Curtiss and co-workers in their Gaussian-1,48,49

Gaussian-2,50 and Gaussian-351 theories. It includes 223
standard enthalpies of formation (55 original G2 molecules,50

93 additional molecules,52 and 75 larger organic molecules
and inorganic compounds53), 58 electron affinities, and 8
proton affinities. Only the first- and second-row elements
(Z < 18) are represented. The G3/99 set has been widely
used for the assessment and calibration of new theoretical
methods. In addition, the W4-08 test set54 of 99 small neutral
molecules is used to evaluate the TM functional on atomization
energies.

1. Standard enthalpies of formation

The standard enthalpy of formation is defined as the
enthalpy change during the chemical reaction in which 1 mol
of the compound is formed from its constituent elements,
with all substances in their standard states at 1 atm (1 atm
= 101.3 kPa). Standard enthalpies of formation at 298 K
(∆f Ho

298) were obtained from total atomic and molecular
energies using the experimental atomic data and methodol-
ogy described by Curtiss et al.53,55 In order to make direct
comparison of the TM functional with other DFT methods

reported in the literature, in this work we adopt the pro-
cedure of Staroverov and co-workers19 which uses the
equilibrium B3LYP/6-31G(2df,p) geometries in combination
with the B3LYP/6-31G(2df,p) zero-point energies (ZPEs)
and thermal corrections obtained with a frequency scale
factor of 0.9854. Total electronic energies are calculated
for those geometries using the much larger basis set
6-311++G(3df,3pd).

As shown in Table I (see Tables S1 and S2 of the
supplementary material), the TM functional is more accu-
rate for standard enthalpies of formation than many other
approximations, but it is less accurate than the VSXC, TPSS,
OLYP, HCTH, and hybrid functionals. Similar to other func-
tionals, but unlike TPSS, the error of the TM functional
increases with increasing molecular size (from the G2 to the
G3 subset). However, the rate of this error increase is the small-
est for TM, compared to other functionals. The largest error
occurs for molecules containing reference atoms with a rela-
tively large spin polarization such as O, S, N, Si, F, and Cl, as
in other methods except TPSS.

2. Atomization energies

The atomization energy of a molecule is defined as the dif-
ference between the total energies of the molecule and the free
constituent atoms, all at 0 K. In the present work, the atomiza-
tion energies were evaluated for the W4-08 test set,54 which
includes 99 small molecules. The equilibrium geometries of
all the molecules in this test set and electronic energies (not
including ZPE) for those geometries were obtained using the
6-311++G(3df,3pd) basis set. Listed in Table II are the average
errors in atomization energies. The ME of the TM functional
for W4-08 atomization energies is +3.11 kcal/mol, suggest-
ing an overestimation trend. The largest MEs are for F2O2

(+32.67 kcal/mol) and AlF3 (�19.00 kcal/mol). For all the

TABLE I. Summary of deviations from experiment of the calculated ∆f Ho
298 for the G3/99 test set. Results of other functionals are taken from Ref. 19. All

values are in kcal/mol. For non-hybrid functionals, the smallest and largest MAEs are in bold and italic, respectively.

G2 subset (148) G3 subset (75) G3/99 (223)

Method ME MAE Max(+) Max(�) ME MAE Max(+) Max(�) ME MAE

Non-hybrid
LSDA �83.7 83.7 0.4 (Li2) �207.7 (C6H6) � 197.1 None �347.5 (azulene) �121.9 121.9
BLYP �0.6 7.3 24.2 (SiCl4) �28.1 (NO2) 12.4 13.9 41.0 (C8H18) �11.0 (C4H4N2) 3.8 9.5
BPW91 �5.4 8.0 16.5 (SiF4) �32.4 (NO2) �5.0 11.1 22.4 [Si(CH3)4] �28.0 (azulene) �5.3 9.0
BP86 �19.9 20.1 7.1 (SiF4) �48.7 (C5H5N) �38.6 38.6 None �72.7 (azulene) �26.2 26.3
PW91 �17.2 17.7 7.5 (Si2H6) �52.7 (C2F4) �35.3 35.3 None �81.1 (azulene) �23.3 23.6
PBE �16.1 16.9 10.8 (Si2H6) �50.5 (C3F4) �32.8 32.8 None �79.7 (azulene) �21.7 22.2
HCTH �0.6 5.6 16.5 (SiCl4) �28.0 (C3F4) 6.4 10.2 27.5 [Si(CH3)4] �22.2 (C2F6) 1.7 7.2
OLYP �1.9 4.8 27.0 (SiF4) �23.5 (NO2) 6.4 7.9 20.9 [Si(CH3)4] �11.0 (CF3) 0.9 5.9
VSXC �0.5 2.8 8.2 (N2H4) �11.5 (CS2) 1.97 4.7 12.0 (C8H18) �8.7 (C6H5) 0.3 3.5
TPSS �5.2 6.0 16.2 (SiF4) �22.9 (ClF3) �5.2 5.5 7.5 (PF5) �12.8 (S2Cl2) �5.2 5.8
TM �2.6 6.8 23.4 (SiF4) �20.7 (NF3) �2.8 9.6 12.8 (PF5) �16.4 (nitro-s-butane) �2.6 7.8

Hybrid
B3LYP 1.1 3.1 20.1 (SiF4) �8.1 (BeH) 8.2 8.4 20.8 (SF6) �4.9 (C4H4N2) 3.5 4.9
B3PW91 �1.4 3.4 21.6 (SiF4) �12.8 (C2F4) �2.5 4.9 17.0 (PF5) �17.0 (naphthalene) �1.8 3.9
B3P86 �17.9 18.2 7.5 (SiF4) �48.1 (C5H8) �41.9 41.9 None �79.2 (C8H18) �26.0 26.1
PBE0 �2.4 4.9 21.3 (SiF4) �19.8 (C5H5N) �9.3 10.2 14.5 (PF5) �35.6 (naphthalene) �4.7 6.7
TPSSh �1.4 4.2 22.0 (SiF4) �18.0 (Si2H6) 0.2 3.3 16.2 (PF5) �6.6 (C8H18) �0.9 3.9

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-017647
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-017647
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-017647
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TABLE II. Performance of various density-functional approximations for the W4-08 test set. The second and
third columns are MEs and MAEs for the 53 molecules in the W4-08 set which also belong to the G2 set. The
fourth and fifth columns are MEs and MAEs for the entire W4-08 set. Results of other functionals are taken from
Ref. 19. All values are in kcal/mol relative to the accurate theoretical reference values as defined in Ref. 54. For
non-hybrid functionals, the smallest and largest MAEs are in bold and italic, respectively.

53 G2 molecules Entire W4-08 set

Method ME MAE ME MAE Max (+) Max (�)

Non-hybrid
LSDA 46.35 46.35 47.43 47.43 123.30 (F2O2)
BLYP 3.84 6.96 4.34 6.98 37.70 (F2O2) �23.19 (AlCl3)
BP86 9.72 10.46 10.28 11.03 45.45 (F2O2) �12.00 (AlCl3)
PBE 10.02 11.83 11.40 12.97 53.51 (F2O2) �15.40 (Si2H6)
OLYP 2.20 4.89 2.61 5.33 29.94 (F2O2) �19.46 (AlCl3)
TPSS 2.39 4.54 3.14 5.24 25.06 (F2O2) �18.62 (C2)
M06-L �1.16 4.26 0.21 4.56 17.72 (P4) �14.67 (AlF3)
TM 1.78 6.67 3.11 7.43 32.67 (F2O2) �19.00 (AlF3)

Hybrid
B3LYP �2.22 3.40 �2.94 4.28 6.37 (N2H) �31.87 (BN 3Π)
B3PW91 �1.70 3.11 �1.56 3.22 6.47 (NO2) �25.56 (C2)
PBE0 �2.47 3.75 �2.47 3.99 5.68 (NO2) �31.04 (BN 3Π)
TPSSh �1.73 4.58 �1.78 4.90 15.17 (B2H6) �34.73 (BN 3Π)

density functionals considered, the largest errors are
observed for molecules containing reference atoms with a
relatively large spin polarization such as B, Al, O, N, Si, F,
and Cl. The TM functional has an MAE of 7.43 kcal/mol,
which is larger than that of M06-L (MAE = 4.56 kcal/mol),
OLYP (MAE = 5.33 kcal/mol), and TPSS (MAE = 5.24
kcal/mol), but much smaller than those of PBE (MAE
= 12.97 kcal/mol) and LSDA (MAE = 47.43 kcal/mol). We
also analyzed separately the 53 G2 molecules included in
the W4-08 set. The MAEs for the G2 subset are marginally
smaller than the corresponding MAEs of the total W4-08
set for every functional. However, the MAEs for the total
W4-08 test set are significantly smaller than those for the G3
test set containing 75 larger molecules. Part of the reason for
this disparity is that dispersion interactions between atoms in a
molecule are more important for the larger G3 molecules than
for the W4-08 set, but conventional density functionals cannot
entirely capture these interactions. (Standard DFT methods
also miss nonlocal long-range van der Waals interactions and,
for that reason, have difficulty in describing intermolecular
forces.56–63)

Apart from the inadequate description of dispersion inter-
action, there are two other potential sources of error. First, the
atomization energy of a molecule depends on the accuracy
of atomic energies, which could be problematic.64 In most
cases, the electron density is spin-unpolarized in a molecule,
but spin-polarized in the constituent atoms. Although the spin-
dependence in the exchange part of a density functional is
exact due to the simple spin scaling relationship, the spin-
dependence of correlation energy is not, meaning that the spin-
dependence of atomic energies may be less accurate than that
of molecular energies. Second, semilocal functionals make
relatively large errors for molecules with electrons occupy-
ing antibonding orbitals, where the electron density is rapidly
varying.

3. Electron affinities

The electron affinity (EA) is the energy released when a
free electron becomes attached to an atom or a molecule. EA is
defined as the difference between the total energies (including
ZPE) at 0 K of the neutral species and the corresponding anion.
Listed in Table III are the EA results calculated and other
functionals.

TABLE III. Summary of deviations from experiment for EAs of the G3/99
(58 species) test set. All values other than those of TM are from Ref. 19.
The molecular geometries, and electronic and unscaled zero-point energies
of both the neutral and anion species by TM were evaluated using the
6-311++G(3df,3pd) basis set. All values are in eV. For non-hybrid functionals,
the smallest and largest MAEs are in bold and italic, respectively.

Method ME MAE Max (+) Max (�)

Non-hybrid
LSDA 0.23 0.24 0.88 (C2) �0.15 (NO2)
BLYP 0.01 0.12 0.70 (C2) �0.26 (NCO)
BPW91 0.04 0.12 0.78 (C2) �0.31 (NO2)
BP86 0.18 0.19 0.89 (C2) �0.15 (NO2)
PW91 0.11 0.14 0.84 (C2) �0.21 (NO2)
PBE 0.06 0.12 0.78 (C2) �0.29 (NO2)
HCTH 0.15 0.19 0.90 (C2) �0.27 (PH)
OLYP �0.12 0.15 0.60 (C2) �0.47 (NO2)
VSXC �0.02 0.13 0.78 (C2) �0.35 (NO2)
TPSS �0.02 0.14 0.82 (C2) �0.32 (NO2)
TM �0.12 0.18 0.74 (C2) �0.45 (HOO)

Hybrid
B3LYP 0.09 0.12 1.10 (C2) �0.09 (HOO)
B3PW91 0.03 0.14 1.08 (C2) �0.26 (HOO)
B3P86 0.59 0.59 1.63 (C2) None
PBE0 �0.03 0.17 1.09 (C2) �0.39 (HOO)
TPSSh �0.05 0.16 0.95 (C2) �0.33 (HOO)
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As seen from Table III, the TM functional underestimates
EAs, similar to the other meta-GGAs listed. The MAE of TM
(0.18 eV) is larger than the MAEs of many other function-
als including TPSS and PBE, but smaller than the MAEs of
HCTH, BP86, and LSDA. Generally, anions are artificially sta-
bilized in finite-basis-set calculations.65 Therefore, the mag-
nitude of EA errors may not be an explicit indication of the
accuracy of the functional itself. The largest error of TM is
found for the C2 molecule, as for all other functionals, due to
the multireference character of the singlet ground state of this
molecule.66–68

4. Proton affinities

The proton affinity (PA) of species is a measure of its
gas-phase basicity. PA is defined as the difference between
the ground-state energies (including ZPE) of the neutral and
protonated species. The PAs for the 8 species of the G3/99
test set are listed in Table IV. We see that the TM functional
gives the most accurate proton energies among non-hybrid
DFT methods considered. Its error is comparable to those
of hybrid functionals which, however, come with a higher
computational cost.

B. Bond lengths

To evaluate the accuracy of the TM functional with regard
to equilibrium bond lengths (re), we adopted the T-96R test
set19 of 96 ground-state molecules consisting of 10 molecu-
lar cations and 86 neutral molecules. The latter includes 73
diatomic molecules consisting of atoms ranging from H to
Cl and 13 symmetric polyatomic molecules, each of which is
characterized by a single bond length. The experimental values
of equilibrium internuclear distances are taken from Ref. 69
for Be2, Ref. 70 for NaLi and cations, and Ref. 71 for the rest.

TABLE IV. Summary of deviations from experiments of PAs for the G3/99
(8 species) test set. All values other than those of TM are from Ref. 19.
The geometries, and electronic and unscaled zero-point energies of TM were
evaluated using the 6-311++G(3df,3pd) basis set. All values are in eV. For
non-hybrid functionals, the smallest and largest MAEs are in bold and italic,
respectively.

Method ME MAE Max (+) Max (�)

Non-hybrid
LSDA �5.9 5.9 None �10.6 (PH3)
BLYP �1.5 1.6 0.4 (C2H2) �3.9 (H2O)
BPW91 0.9 1.5 3.8 (C2H2) �1.3 (PH3)
BP86 �0.5 1.3 2.4 (C2H2) �2.9 (PH3)
PW91 �0.9 1.6 2.2 (C2H2) �3.5 (PH3)
PBE �0.8 1.6 2.4 (C2H2) �3.6 (PH3)
HCTH 1.9 1.9 5.3 (C2H2) None
OLYP 1.5 1.7 5.4 (C2H2) �0.6 (H2O)
VSXC 1.0 1.6 5.0 (C2H2) �1.5 (H2)
TPSS 1.7 1.8 4.4 (C2H2) �0.5 (H2O)
TM 0.7 1.2 4.3 (C2H2) �1.5 (H2O)

Hybrid
B3LYP �0.8 1.2 1.6 (C2H2) �2.3 (H2)
B3PW91 1.0 1.1 4.2 (C2H2) �0.3 (SiH4)
B3P86 0.5 1.0 3.5 (C2H2) �0.9 (SiH4)
PBE0 0.2 1.1 3.9 (C2H2) �1.7 (SiH4)
TPSSh 1.8 1.8 4.8 (C2H2) None

TABLE V. Summary of deviations (in Å) from experiments of bond lengths
(re) for the T-96R (96 diatomic molecules) test set. These are calculated using
the 6-311++G(3df,3pd) basis set. All values other than those of TM are from
Ref. 19. Hartree-Fock values do not include Be2 (unbound). LSDA values do
not include F2

+ and SF (fails to converge). For non-hybrid functionals, the
smallest and largest MAEs are in bold and italic, respectively.

Method ME MAE Max (+) Max (�)

Non-hybrid
LSDA 0.001 0.013 0.042 (BN) �0.094 (Na2)
BLYP 0.021 0.022 0.055 (Al2) �0.032 (Na2)
BPW91 0.017 0.017 0.070 (Li2) �0.007 (F2

+)
BP86 0.017 0.018 0.060 (Li2) �0.006 (F2

+)
PW91 0.014 0.015 0.054 (Li2) �0.016 (Be2)
PBE 0.015 0.016 0.055 (Li2) �0.013 (Be2)
HCTH 0.009 0.015 0.086 (Na2) �0.087 (Si2)
OLYP 0.017 0.018 0.103 (Na2) �0.017 (F2

+)
VSXC 0.012 0.013 0.085 (Na2) �0.023 (P4)
TPSS 0.014 0.014 0.078 (Li2) �0.008 (P4)
TM 0.010 0.012 0.054 (Li2) �0.086 (Si2)

Hybrid
B3LYP 0.005 0.010 0.041 (Be2) �0.040 (Na2)
B3PW91 0.003 0.009 0.060 (Li2) �0.042 (F2

+)
B3P86 0.000 0.008 0.038 (Be2) �0.044 (F2

+)
PBE0 �0.001 0.010 0.063 (Be2) �0.052 (F2

+)
TPSSh 0.008 0.010 0.074 (Li2) �0.026 (F2

+)

Table V shows that TM provides the most accurate descrip-
tion for molecular bond lengths, compared to other non-hybrid
DFT methods, while it is slightly less accurate than hybrid
functionals.

C. Harmonic vibrational frequencies

The harmonic vibrational frequency (ωe) is the frequency
of the idealized harmonic vibration of the molecule. To evalu-
ate the accuracy of the TM functional for harmonic vibrational
frequencies, we used the T-82F test set19 of 82 ground-state
diatomic molecules, which includes 69 neutral species con-
sisting of first- and second-row elements and 13 cations. The
experimental values are from Ref. 69 for Be2, Ref. 70 for NaLi
and cations, and Ref. 71 for the rest. As shown in Table VI, TM
is the most accurate non-hybrid functional for harmonic fre-
quencies. Like other non-hybrid functionals, TM also underes-
timates vibrational frequencies, while hybrid functionals tend
to overestimate them.

D. Reaction barrier heights

Calculation of reaction barrier heights presents a great
challenge to semilocal DFT due to the presence of stretched
bonds in a transition state. To evaluate the performance of the
TM density functional for reaction barrier heights, we adopted
the BH76 test set72 which includes 38 hydrogen transfer
barrier heights and 38 non-hydrogen transfer barrier heights.
Since calculated reaction barrier heights are highly sensi-
tive to the basis set, the geometries of the reactants, tran-
sition states, and products were optimized at QCISD/MG3
level. Single-point calculations of total electronic energies (not
including ZPE) were performed with the MG3S basis set.
Listed in Table VII are the errors for the BH76 set. Barrier
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TABLE VI. Summary of deviations of the calculated harmonic vibrational
frequencies from experiment for the T-82F (82 diatomic molecules) test set.
For TM, the geometries and harmonic vibrational frequencies are computed
using the 6-311++G(3df,3pd) basis set. All values other than those of TM
are from Ref. 19. Hartree-Fock values do not include Be2 (unbound). LSDA
values do not include F2

+ (fails to converge). All values are in cm�1. For
non-hybrid functionals, the smallest and largest MAEs are in bold and italic,
respectively.

Method ME MAE Max (+) Max (�)

Non-hybrid
LSDA �11.8 48.9 140.7 (F2) �227.7 (H2)
BLYP �51.1 55.2 66.9 (Be2) �224.3 (HF+)
BPW91 �32.6 41.4 72.1 (Be2) �161.7 (HF+)
BP86 �37.7 45.5 71.4 (F2

+) �180.4 (HF+)
PW91 �29.3 39.8 82.1 (Be2) �170.1 (HF+)
PBE �31.7 42.0 82.5 (Be2) �175.3 (HF+)
HCTH �14.6 39.9 115.7 (O2

+) �116.9 (MgH)
OLYP �28.7 40.2 89.4 (F2

+) �123.7 (OH+)
VSXC �12.2 33.9 100.3 (N2

+) �162.1 (BeH)
TPSS �18.7 30.4 81.2 (F2

+) �145.9 (HF)
TM �13.5 29.7 91.4 (F2

+) �145.2 (HF)

Hybrid
B3LYP 9.5 33.5 161.9 (F2

+) �99.2 (HF+)
B3PW91 21.9 36.2 194.0 (F2

+) �51.6 (HF+)
B3P86 26.9 37.0 201.0 (F2

+) �52.3 (HF+)
PBE0 34.7 43.6 236.3 (O2

+) �36.2 (AlH)
TPSSh 6.6 26.7 141.4 (F2

+) �78.0 (HF)

heights for individual reactions are available in Table S8 of
the supplementary material. Like other semilocal function-
als, the TM functional tends to underestimate reaction barrier
heights (Table VII). The maximum positive and negative devi-
ations are 20.95 and �28.89 kcal/mol, respectively. The MAE
of TM is 7.08 kcal/mol, larger than those of the VSXC (MAE
= 4.77 kcal/mol), M06-L (MAE = 4.1 kcal/mol), and the hybrid
functionals, but smaller than those of the SCAN (MAE = 7.7
kcal/mol), TPSS (MAE = 8.17 kcal/mol), PBE (MAE = 8.71

TABLE VII. Summary of deviations of the calculated reaction barrier heights
from accurate theoretical reference values72 for the BH76 test set. Results
are taken from Ref. 73 for M06-L, Ref. 20 for SCAN, and Ref. 72 for the
other functionals. All values are in kcal/mol. For non-hybrid functionals, the
smallest and largest MAEs are in bold and italic, respectively.

Method ME MAE

Non-hybrid
LSDA �14.78 14.88
BLYP �8.09 8.11
BP86 �8.74 8.81
PBE �8.66 8.71
VSXC �4.56 4.77
TPSS �8.14 8.17
M06-L �3.9 4.1

SCAN �7.7 7.7
TM �7.08 7.08

Hybrid
B3LYP �4.15 4.28
TPSSh �6.28 6.32

kcal/mol), LSDA (MAE = 14.88 kcal/mol), and the rest of the
non-hybrid functionals.

Reaction barrier heights are generally predicted more
accurately by nonlocal density functionals (e.g., hybrid func-
tionals incorporating exact exchange) because such function-
als exhibit a smaller delocalization error27 for species with
stretched bonds (i.e., transition states). From Table VII, we
can see a large reduction of errors in reaction barrier heights
from nonhybrid to hybrid functionals (e.g., from PBE to PBE0
and from TPSS to TPSSh).

E. Hydrogen-bonded complexes

Hydrogen bonds are ubiquitous in biomolecular systems,
so accurate description of hydrogen-bonded systems is crit-
ically important for applications of DFT in computational
biochemistry. Wave function-based ab initio methods such as
second-order Møller-Plesset perturbation theory and coupled-
cluster methods with good basis sets are highly accurate
in describing weak bonding, but they are computationally
demanding, especially for complex biomolecules. Therefore,
density functionals that can accurately predict properties of
weakly bonded systems are highly desired. In this work,
we adopted the test set of Rabuck and Scuseria74 which
includes 5 nonionic pairs (HF)2, (HCl)2, (H2O)2, HF/HCN,
and HF/H2O, as well as 5 ionic ones CN�/H2O, OH�/H2O,
HCC�/H2O, H3O+/H2O, and NH4

+/H2O. Table VIII reports
a statistical summary for a calculation of the 10 dissocia-
tion energies (D0) and 11 H-bond lengths. As seen from
Table VIII, TM yields the most accurate H-bond dissociation

TABLE VIII. Summary of deviations of the calculated bond lengths (Å) and
dissociation energies D0 (kcal/mol) of 10 hydrogen-bonded complexes rela-
tive to the MP2(full)/6-311++G(3df,3pd) values.19 All values other than those
of TM are from Ref. 19. For the TM values, the 6-311++G(3df,3pd) basis set
is used in the calculations of both the geometry and unscaled ZPE-included
dissociation energies. The bond lengths are defined in Fig. 1 of Ref. 74. For
non-hybrid functionals, the smallest and largest MAEs are in bold and italic,
respectively.

D0 (kcal/mol) Bond lengths (Å)

Method ME MAE ME MAE

Non-hybrid
LSDA 5.8 5.8 �0.127 0.147
BLYP �0.5 0.6 0.027 0.034
BPW91 �0.7 1.0 0.008 0.045
BP86 0.1 0.8 �0.014 0.040
PW91 1.4 1.4 �0.028 0.052
PBE 0.9 1.0 �0.018 0.043
HCTH �0.9 0.9 0.078 0.084
OLYP �2.2 2.2 0.136 0.157
VSXC �1.0 1.3 0.071 0.116
TPSS 0.3 0.6 �0.006 0.021
TM �0.1 0.3 0.014 0.017

Hybrid
B3LYP �0.3 0.4 0.017 0.017
B3PW91 �0.5 0.9 0.005 0.035
B3P86 0.4 0.7 �0.023 0.043
PBE0 0.5 0.7 �0.012 0.032
TPSSh 0.1 0.5 �0.002 0.015

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-017647
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TABLE IX. Summary of deviations of the calculated lowest-lying singlet atomic excitation energies from
experiment. The experimental values are from Ref. 80. The results of TM functional are calculated using the
6-311++G(3df,3pd) basis set. Results of LSDA, PBE, TPSS, TPSSh, PBE0, and B3LYP are taken from Ref. 79,
except for those of O and F, which are evaluated in the present work. All values are in eV. The smallest and largest
MAEs are in bold and italic, respectively.

Atom Transition LSDA PBE TPSS TPSSh PBE0 B3LYP TM Expt.

He 1s→ 2s 19.59 19.73 20.27 20.58 20.62 20.50 20.44 20.62
1s→ 2s 22.99 23.41 24.04 24.23 24.05 23.95 23.98 21.22

Li 2s→ 2p 1.98 1.98 1.99 1.97 1.95 1.98 2.00 1.85
2s→ 3s 3.12 3.09 3.09 3.13 3.23 3.16 3.22 3.37

Be 2s→ 2p 4.84 4.91 5.06 5.05 4.94 4.88 5.01 5.28
2s→ 3s 6.11 6.12 6.29 6.35 6.32 6.21 6.36 6.78

Ne 2p→ 3s 17.45 17.21 17.55 17.94 18.27 17.88 17.76 16.62
2p→ 3p 19.82 19.46 19.74 20.16 20.59 20.11 20.05 18.38

Na 3s→ 3p 2.25 2.12 2.02 2.02 2.08 2.23 2.15 2.10
3s→ 4s 3.05 2.91 2.87 2.90 3.02 3.02 3.05 3.19

Mg 3s→ 3p 4.24 4.18 4.18 4.19 4.20 4.23 4.28 4.35
3s→ 4s 5.02 4.93 5.01 5.06 5.08 5.00 5.12 5.39

Ar 3p→ 4s 11.32 11.27 11.59 11.81 11.90 11.56 11.78 11.55
3p→ 4p 12.68 12.50 12.74 13.00 13.22 12.89 12.98 12.91

K 4s→ 4p 1.70 1.50 1.36 1.36 1.45 1.64 1.48 1.61
4s→ 5s 2.52 2.35 2.28 2.30 2.42 2.43 2.43 2.61

Ca 4s→ 3d 1.88 1.88 1.87 2.02 2.24 2.16 2.11 2.71
4s→ 4p 3.09 2.98 2.90 2.90 2.96 3.03 3.01 2.93

Zn 4s→ 4p 5.80 5.67 5.59 5.52 5.51 5.65 5.70 5.80
2s→ 5s 6.38 6.12 6.10 6.12 6.20 6.22 6.31 6.92

Kr 4p→ 5s 9.52 9.43 9.72 9.92 10.01 9.69 9.94 9.92
4p→ 5p 10.84 10.64 10.85 11.10 11.30 10.98 11.09 11.30

O 2s→ 2p 15.20 15.17 15.83 15.89 15.47 15.61 15.66 15.66
F 2s→ 2p 19.51 19.89 20.65 20.90 20.70 20.57 20.89 20.90

ME �0.03 �0.19 �0.02 0.10 0.16 0.07 0.13
MAE 0.46 0.53 0.47 0.47 0.47 0.44 0.40

energies for all DFT methods, including hybrid functionals.
It also gives the most accurate H-bond lengths for non-hybrid
functionals. It is even more accurate than many hybrid DFT
methods.

F. Atomic excitation energies

Accurate prediction of excitation energies presents a
great challenge to semilocal DFT, even in the non-adiabatic
regime.75 In this work, we assess the TM functional on the
lowest singlet excitation energies of 13 atoms using time-
dependent DFT76,77 within the adiabatic approximation78,79

and the 6-311++G(3df,3pd) basis set. As seen from Table
IX, the TM functional yields the most accurate atomic exci-
tation energies with an MAE of 0.40 eV, an error which is
smaller than those of the LSDA (MAE = 0.46 eV), PBE (MAE
= 0.53 eV), TPSS (MAE = 0.47 eV), and even hybrid function-
als B3LYP (MAE = 0.44 eV), PBE0 (MAE = 0.47 eV), and
TPSSh (MAE = 0.47 eV). The TM functional tends to overes-
timate atomic excitation energies (ME = +0.13 eV), unlike the
other non-hybrid functionals considered. The superior perfor-
mance of the TM approximation in adiabatic time-dependent
DFT makes this semilocal functional potentially useful for
the simulation of dynamical properties of materials, for which
hybrid functionals may be impractical due to their higher
computational cost.

IV. CONCLUDING REMARKS

In conclusion, we have made a comprehensive assessment
of the nonempirical TM meta-GGA functional on standard
molecular test sets. Our calculations show that, among all the
non-hybrid functionals considered, the TM functional achieves
consistently high accuracy for most properties. For excitation
energies, proton affinities, harmonic vibrational frequencies,
as well as dissociation energies and bond lengths of hydrogen-
bonded complexes, it is competitive with or even more accurate
than commonly used hybrid functionals, but has a lower com-
putational cost, making the TM approximation an attractive
candidate for molecular electronic structure calculations. This
accuracy greatly benefits from the improved description of
short-range interactions.

A striking feature of the TM functional is that it incorpo-
rates many exact constraints through the underlying exchange
hole: (1) negativity, (2) uniform coordinate scaling,41 (3)
spin scaling relationship,42 and (4) correct uniform-gas limit.
These conditions are also satisfied by the DME-based VSXC
and M06-L meta-GGA functionals. The small-u behavior
of the exchange hole81 (where u is the separation between
an electron and the hole around the electron) and the sum
rule for the exchange hole are also incorporated into the
TM functional. However, the exact fourth-order gradient
expansion constraint has to be imposed separately, because
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the hole is only ensured to be correct in the uniform-gas
limit.

The high accuracy of the TM functional greatly bene-
fits from the fact that its exchange enhancement factor shows
a slight oscillatory behavior,82 like VSXC and M06-L. This
behavior enables the TM functional to capture or extend the
short-range part of the van der Waals interaction, due to the de-
enhancement (relative to the LSDA) in some regions, leading
to the improvement of noncovalent interactions, as demon-
strated with hydrogen-bonded complexes (Table VIII) and
molecular dimers.83 However, since VSXC and M06-L do
not have the correct gradient expansion in the slowly vary-
ing limit and since they were trained only on molecular data
sets, they are much more popular in quantum chemistry than
in condensed-matter physics. Nevertheless, due to the recov-
ery of the correct uniform-gas limit, those two functionals also
perform quite well for solids. Unlike VSXC and M06-L, the
TM correlation functional was developed separately from the
exchange part. It respects all the exact conditions that the TPSS
correlation satisfies and is an improvement over TPSS in the
low-density (strong-interaction) limit.

Finally, it is worth pointing out that in the development of
the TM functional, the Lieb-Oxford bound84,85 has not been
considered. The reason is that while this bound is an exact
constraint for the integrated exchange energy,86 it is locally
violated by the conventional exact exchange energy density.87

In another paper88 submitted elsewhere, we assess the per-
formance of the TM functional for solids. Our results show
that the TM functional also performs very well for periodic sys-
tems. In particular, it yields the best lattice constants among
many accurate density functionals included for comparison.

SUPPLEMENTARY MATERIAL

See supplementary material for all calculated properties
of individual species.
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