150,181 research outputs found
Knowledge Graph Embedding with Iterative Guidance from Soft Rules
Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of
current research. Combining such an embedding model with logic rules has
recently attracted increasing attention. Most previous attempts made a one-time
injection of logic rules, ignoring the interactive nature between embedding
learning and logical inference. And they focused only on hard rules, which
always hold with no exception and usually require extensive manual effort to
create or validate. In this paper, we propose Rule-Guided Embedding (RUGE), a
novel paradigm of KG embedding with iterative guidance from soft rules. RUGE
enables an embedding model to learn simultaneously from 1) labeled triples that
have been directly observed in a given KG, 2) unlabeled triples whose labels
are going to be predicted iteratively, and 3) soft rules with various
confidence levels extracted automatically from the KG. In the learning process,
RUGE iteratively queries rules to obtain soft labels for unlabeled triples, and
integrates such newly labeled triples to update the embedding model. Through
this iterative procedure, knowledge embodied in logic rules may be better
transferred into the learned embeddings. We evaluate RUGE in link prediction on
Freebase and YAGO. Experimental results show that: 1) with rule knowledge
injected iteratively, RUGE achieves significant and consistent improvements
over state-of-the-art baselines; and 2) despite their uncertainties,
automatically extracted soft rules are highly beneficial to KG embedding, even
those with moderate confidence levels. The code and data used for this paper
can be obtained from https://github.com/iieir-km/RUGE.Comment: To appear in AAAI 201
Semidefinite relaxations for semi-infinite polynomial programming
This paper studies how to solve semi-infinite polynomial programming (SIPP)
problems by semidefinite relaxation method. We first introduce two SDP
relaxation methods for solving polynomial optimization problems with finitely
many constraints. Then we propose an exchange algorithm with SDP relaxations to
solve SIPP problems with compact index set. At last, we extend the proposed
method to SIPP problems with noncompact index set via homogenization. Numerical
results show that the algorithm is efficient in practice.Comment: 23 pages, 4 figure
Non-spectator Contributions To The Lifetime of
In this work, we evaluate the contributions of non-spectator effects to the
lifetimes of and B-mesons. Based on the well-established models and
within a reasonable range of the concerned parameters, the contributions can
reduce the lifetime of by compared to that of B-mesons
which are not significantly affected. This might partly explain the measured
ratio \cite{Data}, which has been a
long-standing discrepancy between theory and experimental data
- …