150,181 research outputs found

    Knowledge Graph Embedding with Iterative Guidance from Soft Rules

    Full text link
    Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Combining such an embedding model with logic rules has recently attracted increasing attention. Most previous attempts made a one-time injection of logic rules, ignoring the interactive nature between embedding learning and logical inference. And they focused only on hard rules, which always hold with no exception and usually require extensive manual effort to create or validate. In this paper, we propose Rule-Guided Embedding (RUGE), a novel paradigm of KG embedding with iterative guidance from soft rules. RUGE enables an embedding model to learn simultaneously from 1) labeled triples that have been directly observed in a given KG, 2) unlabeled triples whose labels are going to be predicted iteratively, and 3) soft rules with various confidence levels extracted automatically from the KG. In the learning process, RUGE iteratively queries rules to obtain soft labels for unlabeled triples, and integrates such newly labeled triples to update the embedding model. Through this iterative procedure, knowledge embodied in logic rules may be better transferred into the learned embeddings. We evaluate RUGE in link prediction on Freebase and YAGO. Experimental results show that: 1) with rule knowledge injected iteratively, RUGE achieves significant and consistent improvements over state-of-the-art baselines; and 2) despite their uncertainties, automatically extracted soft rules are highly beneficial to KG embedding, even those with moderate confidence levels. The code and data used for this paper can be obtained from https://github.com/iieir-km/RUGE.Comment: To appear in AAAI 201

    Semidefinite relaxations for semi-infinite polynomial programming

    Full text link
    This paper studies how to solve semi-infinite polynomial programming (SIPP) problems by semidefinite relaxation method. We first introduce two SDP relaxation methods for solving polynomial optimization problems with finitely many constraints. Then we propose an exchange algorithm with SDP relaxations to solve SIPP problems with compact index set. At last, we extend the proposed method to SIPP problems with noncompact index set via homogenization. Numerical results show that the algorithm is efficient in practice.Comment: 23 pages, 4 figure

    Non-spectator Contributions To The Lifetime of Λb\Lambda_{b}

    Full text link
    In this work, we evaluate the contributions of non-spectator effects to the lifetimes of Λb\Lambda_b and B-mesons. Based on the well-established models and within a reasonable range of the concerned parameters, the contributions can reduce the lifetime of Λb\Lambda_b by 7∼87 \sim 8% compared to that of B-mesons which are not significantly affected. This might partly explain the measured ratio τ(Λb)/τ(B0)=0.79\tau(\Lambda_{b})/\tau(B^{0})=0.79 \cite{Data}, which has been a long-standing discrepancy between theory and experimental data
    • …
    corecore