10,656 research outputs found

    Band Gap of Strained Graphene Nanoribbons

    Get PDF
    The band structures of strained graphene nanoribbons (GNRs) are examined by a tight binding Hamiltonian that is directly related to the type and strength of strains. Compared to the two-dimensional graphene whose band gap remains close to zero even if a large strain is applied, the band gap of graphene nanoribbon (GNR) is sensitive to both uniaxial and shears strains. The effect of strain on the electronic structure of a GNR strongly depends on its edge shape and structural indices. For an armchair GNR, uniaxial weak strain changes the band gap in a linear fashion, and for a large strain, it results in periodic oscillation of the band gap. On the other hand, shear strain always tend to reduce the band gap. For a zigzag GNR, the effect of strain is to change the spin polarization at the edges of GNR, thereby modulate the band gap. A simple analytical model is proposed to interpret the band gap responds to strain in armchair GNR, which agrees with the numerical results.Comment: 30 pages,10 figure

    The Role of Grain Boundaries under Long-Time Radiation

    Full text link
    Materials containing a high proportion of grain boundaries offer significant potential for the development of radiation-resistent structural materials. However, a proper understanding of the connection between the radiation-induced microstructural behaviour of grain boundary and its impact at long natural time scales is still missing. In this letter, point defect absorption at interfaces is summarised by a jump Robin-type condition at a coarse-grained level, wherein the role of interface microstructure is effectively taken into account. Then a concise formula linking the sink strength of a polycrystalline aggregate with its grain size is introduced, and is well compared with experimental observation. Based on the derived model, a coarse-grained formulation incorporating the coupled evolution of grain boundaries and point defects is proposed, so as to underpin the study of long-time morphological evolution of grains induced by irradiation. Our simulation results suggest that the presence of point defect sources within a grain further accelerates its shrinking process, and radiation tends to trigger the extension of twin boundary sections

    Ecological model to predict potential habitats of Oncomelania hupensis, the intermediate host of Schistosoma japonicum in the mountainous regions, China

    Get PDF
    Schistosomiasis japonica is a parasitic disease that remains endemic in seven provinces in the People's Republic of China (P.R. China). One of the most important measures in the process of schistosomiasis elimination in P.R. China is control of Oncomelania hupensis, the unique intermediate host snail of Schistosoma japonicum. Compared with plains/swamp and lake regions, the hilly/mountainous regions of schistosomiasis endemic areas are more complicated, which makes the snail survey difficult to conduct precisely and efficiently. There is a pressing call to identify the snail habitats of mountainous regions in an efficient and cost-effective manner.; Twelve out of 56 administrative villages distributed with O. hupensis in Eryuan, Yunnan Province, were randomly selected to set up the ecological model. Thirty out of the rest of 78 villages (villages selected for building model were excluded from the villages for validation) in Eryuan and 30 out of 89 villages in Midu, Yunnan Province were selected via a chessboard method for model validation, respectively. Nine-year-average Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as well as Digital Elevation Model (DEM) covering Eryuan and Midu were extracted from MODIS and ASTER satellite images, respectively. Slope, elevation and the distance from every village to its nearest stream were derived from DEM. Suitable survival environment conditions for snails were defined by comparing historical snail presence data and remote sensing derived images. According to the suitable conditions for snails, environment factors, i.e. NDVI, LST, elevation, slope and the distance from every village to its nearest stream, were integrated into an ecological niche model to predict O. hupensis potential habitats in Eryuan and Midu. The evaluation of the model was assessed by comparing the model prediction and field investigation. Then, the consistency rate of model validation was calculated in Eryuan and Midu Counties, respectively. The final ecological niche model for potential O. hupensis habitats prediction comprised the following environmental factors, namely: NDVI (≥ 0.446), LST (≥ 22.70°C), elevation (≤ 2,300 m), slope (≤ 11°) and the distance to nearest stream (≤ 1,000 m). The potential O. hupensis habitats in Eryuan distributed in the Lancang River basin and O. hupensis in Midu shows a trend of clustering in the north and spotty distribution in the south. The consistency rates of the ecological niche model in Eryuan and Midu were 76.67% and 83.33%, respectively.; The ecological niche model integrated with NDVI, LST, elevation, slope and distance from every village to its nearest stream adequately predicted the snail habitats in the mountainous regions
    • …
    corecore