2,190 research outputs found

    Teleporting a rotation on remote photons

    Full text link
    Quamtum remote rotation allows implement local quantum operation on remote systems with shared entanglement. Here we report an experimental demonstration of remote rotation on single photons using linear optical element. And the local dephase is also teleported during the process. The scheme can be generalized to any controlled rotation commutes with σz\sigma_{z}.Comment: 5 pages, 4 figure

    Achieving quantum precision limit in adaptive qubit state tomography

    Full text link
    The precision limit in quantum state tomography is of great interest not only to practical applications but also to foundational studies. However, little is known about this subject in the multiparameter setting even theoretically due to the subtle information tradeoff among incompatible observables. In the case of a qubit, the theoretic precision limit was determined by Hayashi as well as Gill and Massar, but attaining the precision limit in experiments has remained a challenging task. Here we report the first experiment which achieves this precision limit in adaptive quantum state tomography on optical polarization qubits. The two-step adaptive strategy employed in our experiment is very easy to implement in practice. Yet it is surprisingly powerful in optimizing most figures of merit of practical interest. Our study may have significant implications for multiparameter quantum estimation problems, such as quantum metrology. Meanwhile, it may promote our understanding about the complementarity principle and uncertainty relations from the information theoretic perspective.Comment: 9 pages, 4 figures; titles changed and structure reorganise

    Error-compensation measurements on polarization qubits

    Full text link
    Systematic errors are inevitable in most measurements performed in real life because of imperfect measurement devices. Reducing systematic errors is crucial to ensuring the accuracy and reliability of measurement results. To this end, delicate error-compensation design is often necessary in addition to device calibration to reduce the dependence of the systematic error on the imperfection of the devices. The art of error-compensation design is well appreciated in nuclear magnetic resonance system by using composite pulses. In contrast, there are few works on reducing systematic errors in quantum optical systems. Here we propose an error-compensation design to reduce the systematic error in projective measurements on a polarization qubit. It can reduce the systematic error to the second order of the phase errors of both the half-wave plate (HWP) and the quarter-wave plate (QWP) as well as the angle error of the HWP. This technique is then applied to experiments on quantum state tomography on polarization qubits, leading to a 20-fold reduction in the systematic error. Our study may find applications in high-precision tasks in polarization optics and quantum optics.Comment: 8 pages, 3 figure

    Remote Preparation of Mixed States via Noisy Entanglement

    Full text link
    We present a practical and general scheme of remote preparation for pure and mixed state, in which an auxiliary qubit and controlled-NOT gate are used. We discuss the remote state preparation (RSP) in two important types of decoherent channel (depolarizing and dephaseing). In our experiment, we realize RSP in the dephaseing channel by using spontaneous parametric down conversion (SPDC), linear optical elements and single photon detector.Comment: 10 pages, 5 figures, submitted to PR

    Experimentally reducing the quantum measurement back-action in work distributions by a collective measurement

    Full text link
    In quantum thermodynamics, the standard approach to estimate work fluctuations in unitary processes is based on two projective measurements, one performed at the beginning of the process and one at the end. The first measurement destroys any initial coherence in the energy basis, thus preventing later interference effects. In order to decrease this back-action, a scheme based on collective measurements has been proposed in~[PRL 118, 070601 (2017)]. Here, we report its experimental implementation in an optical system. The experiment consists of a deterministic collective measurement on identically prepared two qubits, encoded in the polarisation and path degree of a single photon. The standard two projective measurement approach is also experimentally realized for comparison. Our results show the potential of collective schemes to decrease the back-action of projective measurements, and capture subtle effects arising from quantum coherence.Comment: 9 pages, 4 figure
    corecore