945 research outputs found

    Production of doubly heavy baryons via Higgs boson decays

    Full text link
    We systematically analyzed the production of semi-inclusive doubly heavy baryons (Ξcc\Xi_{cc}, Ξbc\Xi_{bc} and Ξbb\Xi_{bb}) for the process H0→ΞQQ′+Q′ˉ+QˉH^0 \rightarrow \Xi_{QQ'}+ \bar {Q'} + \bar {Q} through four main Higgs decay channels within the framework of non-relativistic QCD. The contributions from the intermediate diquark states, ⟨cc⟩[1S0]6\langle cc\rangle[^{1}S_{0}]_{\mathbf{6}}, ⟨cc⟩[3S1]3ˉ\langle cc\rangle[^{3}S_{1}]_{\mathbf{\bar 3}}, ⟨bc⟩[3S1]3ˉ/6\langle bc\rangle[^{3}S_{1}]_{\mathbf{\bar 3}/ \mathbf{6}}, ⟨bc⟩[1S0]3ˉ/6\langle bc\rangle[^{1}S_{0}]_{\mathbf{\bar 3}/ \mathbf{6}}, ⟨bb⟩[1S0]6\langle bb\rangle[^{1}S_{0}]_{\mathbf{6}} and ⟨bb⟩[3S1]3ˉ\langle bb\rangle[^{3}S_{1}]_{\mathbf{\bar 3}}, have been taken into consideration. The differential distributions and three main sources of the theoretical uncertainties have been discussed. At the High Luminosity Large Hadron Collider, there will be about 0.43×104\times10^4 events of Ξcc\Xi_{cc}, 6.32×104\times10^4 events of Ξbc\Xi_{bc} and 0.28×104\times10^4 events of Ξbb\Xi_{bb} produced per year. There are fewer events produced at the Circular Electron Positron Collider and the International Linear Collider, about 0.26×1020.26\times 10^{2} events of Ξcc\Xi_{cc}, 3.83×1023.83\times 10^{2} events of Ξbc\Xi_{bc} and 0.17×1020.17\times 10^{2} events of Ξbb\Xi_{bb} in operation.Comment: 15 pages, 3 figures, 7 table

    A precise determination of the top-quark pole mass

    Full text link
    The Principle of Maximum Conformality (PMC) provides a systematic way to eliminate the renormalization scheme and renormalization scale uncertainties for high-energy processes. We have observed that by applying PMC scale-setting, one obtains comprehensive and self-consistent pQCD predictions for the top-quark pair total cross-section and the top-quark pair forward-backward asymmetry in agreement with the measurements at the Tevatron and LHC. As a step forward, in the present paper, we determine the top-quark pole mass via a detailed comparison of the top-quark pair cross-section with the measurements at the Tevatron and LHC. The results for the top-quark pole mass are mt=174.6−3.2+3.1m_t=174.6^{+3.1}_{-3.2} GeV for the Tevatron with S=1.96\sqrt{S}=1.96 TeV, mt=173.7±1.5m_t=173.7\pm1.5 GeV and 174.2±1.7174.2\pm1.7 GeV for the LHC with S=7\sqrt{S} = 7 TeV and 88 TeV, respectively. Those predictions agree with the average, 173.34±0.76173.34\pm0.76 GeV, obtained from various collaborations via direct measurements. The consistency of the pQCD predictions using the PMC with all of the collider measurements at different energies provides an important verification of QCD.Comment: 10 pages, 6 figures. Revised version to be published in Eur.Phys.J.

    Architecture-based integrated management of diverse cloud resources

    Get PDF
    Cloud management faces with great challenges, due to the diversity of Cloud resources and ever-changing management requirements. For constructing a management system to satisfy a specific management requirement, a redevelopment solution based on existing management systems is usually more practicable than developing the system from scratch. However, the difficulty and workload of redevelopment are also very high. As the architecture-based runtime model is causally connected with the corresponding running system automatically, constructing an integrated Cloud management system based on the architecture-based runtime models of Cloud resources can benefit from the model-specific natures, and thus reduce the development workload. In this paper, we present an architecture-based approach to managing diverse Cloud resources. First, manageability of Cloud resources is abstracted as runtime models, which could automatically and immediately propagate any observable runtime changes of target resources to corresponding architecture models, and vice versa. Second, a customized model is constructed according to the personalized management requirement and the synchronization between the customized model and Cloud resource runtime models is ensured through model transformation. Thus, all the management tasks could be carried out through executing programs on the customized model. The experiment on a real-world cloud demonstrates the feasibility, effectiveness and benefits of the new approach to integrated management of Cloud resources ? 2014, Chen et al.; licensee Springer.EI11-15
    • …
    corecore