51,018 research outputs found

    Study of Multilouvered Heat Exchangers at Low Reynolds numbers

    Get PDF
    Air Conditioning and Refrigeration Project 13

    Recent progress in random metric theory and its applications to conditional risk measures

    Full text link
    The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures. This paper includes eight sections. Section 1 is a longer introduction, which gives a brief introduction to random metric theory, risk measures and conditional risk measures. Section 2 gives the central framework in random metric theory, topological structures, important examples, the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals. Section 3 gives several important representation theorems for random conjugate spaces. Section 4 gives characterizations for a complete random normed module to be random reflexive. Section 5 gives hyperplane separation theorems currently available in random locally convex modules. Section 6 gives the theory of random duality with respect to the locally L0−L^{0}-convex topology and in particular a characterization for a locally L0−L^{0}-convex module to be L0−L^{0}-pre−-barreled. Section 7 gives some basic results on L0−L^{0}-convex analysis together with some applications to conditional risk measures. Finally, Section 8 is devoted to extensions of conditional convex risk measures, which shows that every representable L∞−L^{\infty}-type of conditional convex risk measure and every continuous Lp−L^{p}-type of convex conditional risk measure (1≤p<+∞1\leq p<+\infty) can be extended to an LF∞(E)−L^{\infty}_{\cal F}({\cal E})-type of σϵ,λ(LF∞(E),LF1(E))−\sigma_{\epsilon,\lambda}(L^{\infty}_{\cal F}({\cal E}), L^{1}_{\cal F}({\cal E}))-lower semicontinuous conditional convex risk measure and an LFp(E)−L^{p}_{\cal F}({\cal E})-type of Tϵ,λ−{\cal T}_{\epsilon,\lambda}-continuous conditional convex risk measure (1≤p<+∞1\leq p<+\infty), respectively.Comment: 37 page
    • …
    corecore