6,087 research outputs found

    Combinations of antioxidants and/or of epigenetic enzyme inhibitors allow for enhanced collection of mouse bone marrow hematopoietic stem cells in ambient air

    Get PDF
    Hematopoietic cell transplantation (HCT) is a treatment for malignant and non-malignant disorders. However, sometimes the numbers of donor hematopoietic stem cells (HSC) are limiting, which can compromise the success of HCT. We recently published that collection and processing of mouse bone marrow (BM) and human cord blood cells in a hypoxic atmosphere of 3% O2 or in ambient air (~21% O2) in the presence of cyclosporine A yields increased numbers of HSC. We now show that collection and processing of mouse BM cells in ambient air in the presence of specific combinations of anti-oxidants and/or inhibitors of epigenetic enzymes can also enhance the collection of HSC, information of potential relevance for enhanced efficacy of HCT

    Thermodynamic Properties of Spherically-Symmetric, Uniformly-Accelerated Reference Frames

    Get PDF
    We aim to study the thermodynamic properties of the spherically symmetric reference frames with uniform acceleration, including the spherically symmetric generalization of Rindler reference frame and the new kind of uniformly accelerated reference frame. We find that, unlike the general studies about the horizon thermodynamics, one cannot obtain the laws of thermodynamics for their horizons in the usual approaches, despite that one can formally define an area entropy (Bekenstein-Hawking entropy). In fact, the common horizon for a set of uniformly accelerated observers is not always exist, even though the Hawking-Unruh temperature is still well-defined. This result indicates that the Hawking-Unruh temperature is only a kinematic effect, to gain the laws of thermodynamics for the horizon, one needs the help of dynamics. Our result is in accordance with those from the various studies about the acoustic black holes.Comment: 8 page

    Reconstructing quintom from WMAP 5-year observations: Generalized ghost condensate

    Full text link
    In the 5-year WMAP data analysis, a new parametrization form for dark energy equation-of-state was used, and it has been shown that the equation-of-state, w(z)w(z), crosses the cosmological-constant boundary w=−1w=-1. Based on this observation, in this paper, we investigate the reconstruction of quintom dark energy model. As a single-real-scalar-field model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. Therefore, we reconstruct this scalar-field quintom dark energy model from the WMAP 5-year observational results. As a comparison, we also discuss the quintom reconstruction based on other specific dark energy ansatzs, such as the CPL parametrization and the holographic dark energy scenarios.Comment: 8 pages, 11 figure

    Search for Invisible Decays of η\eta and η′\eta^\prime in J/ψ→ϕηJ/\psi \to \phi\eta and ϕη′\phi \eta^\prime

    Full text link
    Using a data sample of 58×10658\times 10^6 J/ψJ/\psi decays collected with the BES II detector at the BEPC, searches for invisible decays of η\eta and η′\eta^\prime in J/ψJ/\psi to ϕη\phi\eta and ϕη′\phi\eta^\prime are performed. The ϕ\phi signals, which are reconstructed in K+K−K^+K^- final states, are used to tag the η\eta and η′\eta^\prime decays. No signals are found for the invisible decays of either η\eta or η′\eta^\prime, and upper limits at the 90% confidence level are determined to be 1.65×10−31.65 \times 10^{-3} for the ratio B(η→invisible)B(η→γγ)\frac{B(\eta\to \text{invisible})}{B(\eta\to\gamma\gamma)} and 6.69×10−26.69\times 10^{-2} for B(η′→invisible)B(η′→γγ)\frac{B(\eta^\prime\to \text{invisible})}{B(\eta^\prime\to\gamma\gamma)}. These are the first searches for η\eta and η′\eta^\prime decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo

    A New Type of Dark Energy Model

    Full text link
    In this paper, we propose a general form of the equation of state (EoS) which is the function of the fractional dark energy density Ωd\Omega_{d}. At least, five related models, the cosmological constant model, the holographic dark energy model, the agegraphic dark energy model, the modified holographic dark energy model and the Ricci scalar holographic dark energy model are included in this form. Furthermore, if we consider proper interactions, the interactive variants of those models can be included as well. The phase-space analysis shows that the scaling solutions may exist both in the non-interacting and interacting cases. And the stability analysis of the system could give out the attractor solution which could alleviate the coincidence problem.Comment: Minor modifications, references adde

    The Holographic Dark Energy in a Non-flat Universe

    Full text link
    We study the model for holographic dark energy in a spatially closed universe, generalizing the proposal in hep-th/0403127 for a flat universe. We provide independent arguments for the choice of the parameter c=1c=1 in the holographic dark energy model. On the one hand, cc can not be less than 1, to avoid violating the second law of thermodynamics. On the other hand, observation suggests cc be very close to 1, it is hard to justify a small deviation of cc from 1, if c>1c>1.Comment: 12 pages, harvmac, v2: order of authors is corrected in webpage, v3: refs. adde

    The Localization of ss-Wave and Quantum Effective Potential of a Quasi-Free Particle with Position-Dependent Mass

    Full text link
    The properties of the s-wave for a quasi-free particle with position-dependent mass(PDM) have been discussed in details. Differed from the system with constant mass in which the localization of the s-wave for the free quantum particle around the origin only occurs in two dimensions, the quasi-free particle with PDM can experience attractive forces in DD dimensions except D=1 when its mass function satisfies some conditions. The effective mass of a particle varying with its position can induce effective interaction which may be attractive in some cases. The analytical expressions of the eigenfunctions and the corresponding probability densities for the s-waves of the two- and three-dimensional systems with a special PDM are given, and the existences of localization around the origin for these systems are shown.Comment: 12pages, 8 figure

    Curvaton Dynamics and the Non-Linearity Parameters in Curvaton Model

    Full text link
    We investigate the curvaton dynamics and the non-linearity parameters in curvaton model with potential slightly deviating from the quadratic form in detail. The non-linearity parameter gNLg_{NL} will show up due to the curvaton self-interaction. We also point out that the leading order of non-quadratic term in the curvaton potential can be negative, for example in the axion-type curvaton model. If a large positive gNLg_{NL} is detected, the axion-type curvaton model will be preferred.Comment: 14 pages, 4 figures; refs adde

    Observation of Two New N* Peaks in J/psi -> ppi−nˉp pi^- \bar n and pˉπ+n\bar p\pi^+n Decays

    Full text link
    The πN\pi N system in decays of J/ψ→NˉNπJ/\psi\to\bar NN\pi is limited to be isospin 1/2 by isospin conservation. This provides a big advantage in studying N∗→πNN^*\to \pi N compared with πN\pi N and γN\gamma N experiments which mix isospin 1/2 and 3/2 for the πN\pi N system. Using 58 million J/ψJ/\psi decays collected with the Beijing Electron Positron Collider, more than 100 thousand J/ψ→pπ−nˉ+c.c.J/\psi \to p \pi^- \bar n + c.c. events are obtained. Besides two well known N∗N^* peaks at 1500 MeV and 1670 MeV, there are two new, clear N∗N^* peaks in the pπp\pi invariant mass spectrum around 1360 MeV and 2030 MeV. They are the first direct observation of the N∗(1440)N^*(1440) peak and a long-sought "missing" N∗N^* peak above 2 GeV in the πN\pi N invariant mass spectrum. A simple Breit-Wigner fit gives the mass and width for the N∗(1440)N^*(1440) peak as 1358±6±161358\pm 6 \pm 16 MeV and 179±26±50179\pm 26\pm 50 MeV, and for the new N∗N^* peak above 2 GeV as 2068±3−40+152068\pm 3^{+15}_{-40} MeV and 165±14±40165\pm 14\pm 40 MeV, respectively

    Interacting holographic dark energy model and generalized second law of thermodynamics in non-flat universe

    Get PDF
    In the present paper we consider the interacting holographic model of dark energy to investigate the validity of the generalized second laws of thermodynamics in non-flat (closed) universe enclosed by the event horizon measured from the sphere of the horizon named LL. We show that for LL as the system's IR cut-off the generalized second law is respected for the special range of the deceleration parameter.Comment: 11 pages, no figure
    • …
    corecore