557 research outputs found

    An MPI-OpenMP Hybrid Parallel H

    Get PDF
    In this paper we propose a high performance parallel strategy/technique to implement the fast direct solver based on hierarchical matrices method. Our goal is to directly solve electromagnetic integral equations involving electric-large and geometrical-complex targets, which are traditionally difficult to be solved by iterative methods. The parallel method of our direct solver features both OpenMP shared memory programming and MPl message passing for running on a computer cluster. With modifications to the core direct-solving algorithm of hierarchical LU factorization, the new fast solver is scalable for parallelized implementation despite of its sequential nature. The numerical experiments demonstrate the accuracy and efficiency of the proposed parallel direct solver for analyzing electromagnetic scattering problems of complex 3D objects with nearly 4 million unknowns

    Advances in Polar Materials for Lithium-Sulfur Batteries

    Get PDF
    Lithium-sulfur batteries are regarded as promising candidates for energy storage devices due to their high theoretical energy density. Various approaches are proposed to break through the obstacles that are preventing Li-S batteries from realizing practical application. Recently, the importance of the strong chemical interaction between polar materials and polysulfides is recognized by researchers to improve the performance of Li-S batteries, especially with respect to the shuttle effect. Polar materials, unlike nonpolar materials, exhibit strong interactions with polysulfides without any modification or doping because of their intrinsic polarity, absorbing the polar polysulfides and thus suppressing the notorious shuttle effect. The recent advances on polar materials for Li-S batteries are reviewed here, especially the chemical polar-polar interaction effects toward immobilizing dissolved polysulfides, and the relationship between the intrinsic properties of the polar materials and the electrochemical performance of the Li-S batteries are discussed. Polar materials, including polar inorganics in the cathode and polar organics as binder for the Li-S batteries are respectively described. Finally, future directions and prospects for the polar materials used in Li-S batteries are also proposed

    Facile synthesis of coaxial CNTs/MnOx-carbon hybrid nanofibers and their greatly enhanced lithium storage performance

    Get PDF
    Carbon nanotubes (CNTs)/MnOx-Carbon hybrid nanofibers have been successfully synthesized by the combination of a liquid chemical redox reaction (LCRR) and a subsequent carbonization heat treatment. The nanostructures exhibit a unique one-dimensional core/shell architecture, with one-dimensional CNTs encapsulated inside and a MnOx-carbon composite nanoparticle layer on the outside. The particular porous characteristics with many meso/micro holes/pores, the highly conductive one-dimensional CNT core, as well as the encapsulating carbon matrix on the outside of the MnOx nanoparticles, lead to excellent electrochemical performance of the electrode. The CNTs/MnOx-Carbon hybrid nanofibers exhibit a high initial reversible capacity of 762.9 mAh-1, a high reversible specific capacity of 560.5 mAh-1 after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 396.2 mAh-1 when cycled at the current density of 1000 mA-1, indicating that the CNTs/MnOx-Carbon hybrid nanofibers are a promising anode candidate for Li-ion batteries

    Si-based anode materials for lithium rechargeable batteries

    Get PDF
    Silicon is a very promising candidate to replace graphite as the anode in Li-ion batteries because of its very high theoretical capacity, relatively low cost and low toxicity. However, it has not yet made its way into commercial cells. This review highlights recent progress on Si-based anode materials for lithium rechargeable batteries

    NiCo2O4/C Nanocomposite as a highly reversible anode material for lithium-ion batteries

    Get PDF
    A NiCo2O4/C nanocomposite has been synthesized by a hydrothermal method followed by a calcination. X-ray powder diffraction and transmission electron microscopy measurements demonstrated the composite was composed of crystalline NiCo2O4 and amorphous carbon, and NiCo2O4 and carbon particles amalgamated together with good affinity. The electrochemical results showed as high as 914.5 mAh/g reversible capacity could be achieved at 40 mA/g current density in the potential range of 0.01-3.0 V. The initial coulombic efficiency of the composite was 79.2%, and the capacity retention was 78.3% up to 50 cycles. The superior electrochemical performance indicated that the NiCo2O4/C nanocomposite might be a promising alternative to conventional graphite-based anode materials for lithium-ion batteries

    Synthesis and electrochemical properties of WO3/C for lithium ion batteries

    Get PDF
    WO3/C nanorods were prepared by a combination of hydrothermal synthesis method and the solid phase reaction method, using (NH4)10H2(W2O7)6, H2C2O4·2H2O and glucose(carbon source) as raw materials. The effects of different proportions of glucose on the morphologies and electrochemical properties of the final products were systematically investigated. The results showed that the WO3/C nanorods prepared with the 10 wt.% glucose as carbon source exhibited the highest reversible specific capacity (807 mAh g-1) at current density of 50 mA g-1 and the best cycle performances among all samples. Besides, it behaved good rate performance. It indicated that WO3/C nanorods could be promising electrode materials for lithium ion battery application

    General synthesis of porous mixed metal oxide hollow spheres with enhanced supercapacitive properties

    Get PDF
    Porous mixed metal oxide (MMO) hollow spheres present high specific surface areas, abundant electrochemically active sites, and outstanding electrochemical properties, showing potential applications in energy storage. A hydro/solvothermal process, followed by a calcination process, can be a viable method for producing uniform porous metal oxide hollow spheres. Unfortunately, this method usually involves harsh synthetic conditions such as high temperature and intricate processing. Herein, we report a general and facile ion adsorption-annealing approach for the fabrication of uniform porous MMO hollow spheres. The size and shell thickness of the as-obtained hollow spheres can be adjusted by the carbohydrate sphere templates and the solution concentration. Electrochemical measurements of the MMO hollow spheres demonstrate excellent supercapacitive properties, which may be due to the small size, ultrathin shells, and fine porous structure
    • …
    corecore