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and shell thickness of the as-obtained hollow spheres can be adjusted by the carbohydrate sphere templates
and the solution concentration. Electrochemical measurements of the MMO hollow spheres demonstrate
excellent supercapacitive properties, which may be due to the small size, ultrathin shells, and fine porous
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ABSTRACT: Porous mixed metal oxide (MMO) hollow spheres present high specific surface 

areas, abundant electrochemically active sites and outstanding electrochemical properties, 

showing potential applications in energy storage. A hydro/solvothermal process followed by a 

calcination process can be a viable method for producing uniform porous metal oxide hollow 

spheres. Unfortunately, this method usually involves harsh synthetic conditions such as high 

temperature and intricate processing. Herein, we report a general and facile “ion adsorption-
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annealing” approach for the fabrication of uniform porous MMO hollow spheres. The size and 

shell thickness of the as-obtained hollow spheres can be adjusted by the carbohydrate sphere 

templates and the solution concentration. Electrochemical measurements of the MMO hollow 

spheres demonstrate excellent supercapacitive properties, which may be due to the small size, 

ultrathin shells and fine porous structure. 

1. INTRODUCTION 

Transition metal oxides have been considered to be promising electrode materials for energy 

storage devices such as electrochemical capacitors (ECs), fuel cells (FCs) and lithium ion 

batteries (LIBs). Among them, cobalt oxides exhibit outstanding anodic performance.
1-4

 

Nevertheless they often suffer from high cost and toxicity, as well as poor conductivity. To solve 

these problems, much effort is being directed towards the fabrication of cheap and eco-friendly 

mixed metal oxides (MMOs) like ZnCo2O4,
5-7

 NiFe2O4,
8-10

 Zn2SnO4 and ZnSnO3.
11,12

 Due to 

their complex chemical compositions, as well as the synergetic effects between two metals, 

MMO present higher electrochemical activity than their corresponding single metal oxides.
13-16

 

Unfortunately, poor conductivity and structural collapse are still severe weakness that limit full 

electrochemical reactions, resulting in fast capacity decay. Many approaches, such as controlling 

nanostructures
17-20

 and synthesizing MMO/Ni substrates
21-23

 and MMO/carbon hybrids
24-26

 have 

been developed to further improve their electrochemical performance. 

    Hollow spheres, especially those with porous nanostructures, have attracted numerous 

research efforts in the energy storage field. Compared with the same-sized solid nanomaterials, 

hollow spheres deliver short ion diffusion paths, abundant active sites for reactions, and plentiful 

buffer space to accommodate volume changes during charge-discharge processes.
27-29

 In recent 

years, much effort has been directed towards exploring effective strategies for the fabrication of 
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porous hollow spheres. Using carbohydrate spheres (CSs) as hard templates has been a popular 

method to prepare hollow spheres because they are simple in preparation yet effective in 

morphology controlling.
30,31

 Zhang et al. prepared hollow mixed metal oxides with multiple 

shells by a “penetration-solidification-annealing” process.
32

 The solidification process was 

carried out at 170 oC by refluxing to obtain M-glycolate-CSs precursor. Tian et al. prepared 

hollow ZnO by a hydrothermal process to obtain Zn-CSs precursor and a following annealing 

process to obtain ZnO product.
33

 It should be noted that both the refluxing process and the 

hydrothermal process employed to obtain the M-CSs precursor suffer from high temperature and 

complicated processing. So, a facile and general strategy for fabricating porous MMO hollow 

spheres is highly desirable.   

    To solve this problem, we have developed a facile and general “ion adsorption-annealing” 

method which involves an ion adsorption process to prepare M-M-CSs precursor, combined with 

a subsequent calcination process to synthesize uniform porous MMO hollow spheres. In this 

method, the ion adsorption process was carried out at room temperature without any complex 

agents, precipitants, or surfactants, which makes it quite simple. Furthermore, the hollow 

structure, thin shell, and porosity endow the MMO samples with high specific surface area, good 

ion/electron transport properties, and volume buffer capability, which are all beneficial to the 

high discharge capacitance, excellent rate performance and long cycle life.      

2. EXPERIMENTAL METHODS 

2.1. Synthesis  

The carbohydrate spheres template was prepared by the polymerization reaction of glucose 

under hydrothermal conditions at 180 oC for 10 h. 
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Synthesis of porous ZnCo2O4 hollow spheres. For the synthesis of porous ZnCo2O4 hollow 

spheres, 0.05 g of freshly-prepared CSs were dispersed into 50 ml of deionized water containing 

0.04 mol of Co(NO3)2·6H2O and 0.02 mol of Zn(NO3)2·6H2O by sonication. After ultrasonic 

dispersion for 2 h, the resulting suspension was stirred for 12 h at 25 ℃. Then, the Zn-Co-CSs 

precursor was obtained after filtration, washed with DI water and dried at 60 ℃ overnight. 

Finally, the precursor was heated in air at 450 oC for 2 h with a heating rate of 1 oC min
-1

 to 

synthesize the porous ZnCo2O4 hollow spheres.  

Synthesis of porous NiFe2O4 hollow spheres. 0.05 g of freshly-prepared CSs, 0.04 mol of 

Fe(NO3)3·9H2O and 0.02 mol of Ni(NO3)2·6H2O were used as the raw materials, while the other 

conditions were the same as the above procedure.  

Synthesis of porous ZnSnO3 hollow spheres. For the synthesis of porous ZnSnO3 hollow 

spheres, 0.03 mol of SnCl4·5H2O and 0.03 mol of Zn(NO3)2·6H2O were used as the sources of 

cations and absolute ethanol was used as the solvent, while the other conditions were the same as 

the preparation process of ZnCo2O4 and NiFe2O4.  

2.2 Materials characterization 

Crystallographic information of the as-prepared precursors and MMO products was obtained 

by powder X-ray diffraction (XRD) analysis using a Rigaku D/Max-2500 with Cu Kα radiation 

(λ=0.15418 nm). The morphologies and structures of the as-prepared MMO hollow spheres were 

investigated by scanning electron microscopy (SEM, JEOL JSM-6700F), transmission electron 

microscope (TEM) and high-resolution TEM (HRTEM, Tecnai G2 F20). The element analysis of 

the as-obtained samples was evaluated using an energy dispersive X-ray spectroscopy (EDS, 

Oxford ISIS300). Thermogravimetric analysis (TGA) of the as-prepared Zn-Co-CSs precursor 

was conducted in air up to 700 ℃ on a Q5000 thermal analyzer (TA Instruments). Nitrogen 
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adsorption-desorption isotherms of the MMO hollow spheres were carried out at 77 K on a 

Quantachrome Autosorb-IQ2 analyzer. Specific surface areas of the samples were measured by 

Brunauer-Emmett-Teller analysis.  

2.3. Electrochemical measurements 

The working electrodes were fabricated from viscous slurry containing active materials (80 

wt%), acetylene black (10 wt%) and polyvinylidene fluoride (PVDF, 10 wt%) in N-

methylpyrrolidinone (NMP). Then the obtained slurry was pasted onto 1 cm × 1 cm current 

collectors. The average loading mass was about 3 mg cm
-2

. For electrochemical measurements, a 

three-electrode cell was fabricated using a Pt plate as the counter electrode and Hg/HgO 

electrode as the reference electrode. For ZnCo2O4 and NiFe2O4 electrodes, a 2 M KOH aqueous 

solution was used as electrolyte. For ZnSnO3 electrode, a 1 M Na2SO4 aqueous solution was the 

electrolyte. Electrochemical properties of the electrodes were characterized by galvanostatic 

charge-discharge measurements (LAND battery test instrument) at various current densities and 

cyclic voltammetry (CV, CHI600e electrochemical workstation) tests at different scan rates. An 

asymmetric supercapacitor (ASC) is constructed using ZnCo2O4 electrode as the positive 

electrode, active carbon electrode as the negative electrode and a 2 M KOH aqueous solution as 

electrolyte. The two electrodes were separated using a polypropylene sheet. All electrochemical 

tests were performed at room temperature.  

The specific capacitance C (F g
-1

) was derived from galvanostatic charge-discharge curves 

using Eq. (1): 

𝐶 =
𝐼∆𝑡

𝑚∆𝑉
                                              (1) 



 6 

where I (A), ∆t (s), m (g) and ∆V (V) represent the charge/discharge current, the discharge time, 

the mass of electroactive material and the working voltage window, respectively. The energy 

density E (Wh kg
-1

) and power density P (W kg
-1

) is calculated from the following formulas: 

𝐸 =
1

2
𝐶cell∆𝑉2                                        (2) 

𝑃 =
𝐸

∆𝑡
                                                      (3) 

where Ccell (F g
-1

) is the specific capacitance of the ASC device, ∆V (V) indicates the working 

potential window and ∆t (s) denotes the time for full discharge.  

3. RESULTS AND DISCUSSION 

3.1. Material characterization and probable formation mechanism 

The “ion adsorption-annealing” process for porous MMO hollow spheres is illustrated in 

Scheme 1. First, CSs about 400 nm in diameter with smooth surfaces were synthesized (Figure 

S1, Figure S2a and S2b). It is well-known that abundant oxygenic functional groups, such as 

C=O, COOH and OH, are exposed on freshly-prepared CSs, which could adsorb metal cations 

by electrostatic adsorption to form M-M-CSs precursor,
30,31,34

 which shows a rougher surface 

than the CSs (Figure S2c and S2d). The metal cations absorbed on CSs were then annealed at a 

certain temperature to remove the CSs templates, and uniform MMO hollow spheres with fine 

porous structures were obtained. The thermal properties of the M-M-CSs precursor were 

investigated via TGA to explore the crystallization temperature of MMO and the temperature for 

the removal of CSs. For Zn-Co-CSs precursor, the thermal decomposition consists of two steps 

(Figure S3). The first stage below 200 ℃ may be mainly resulted from the removal of physically 

adsorbed water. While the second stage between 200 and 400 ℃ is ascribed to the degradation of 

CSs coupled with the formation of ZnCo2O4. Thus, 450 ℃ was set as the calcination temperature 

for the transformation from Zn-Co-CSs precursor to porous ZnCo2O4 hollow spheres. 
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Scheme 1. Scheme for the synthesis and energy storage process for the as-prepared porous 

MMO hollow spheres (ZnCo2O4 as an example). 

The crystal structure and morphology of the as-obtained porous ZnCo2O4, NiFe2O4 and 

ZnSnO3 hollow spheres were characterized by XRD, SEM and TEM. Figure 1a exhibits the 

XRD pattern of the ZnCo2O4 product. All diffraction peaks can be attributed to cubic ZnCo2O4 

phase with lattice constants of a = b = c = 8.095 Å (space group Fd3m, JCPDS 23-1390). So it is 

confirmed that after calcination at 450 ℃, Zn-Co-CSs precursor is fully transferred into ZnCo2O4 

with high purity and good crystallinity. An SEM image displayed in Figure 1b reveals that the 

ZnCo2O4 sample is mainly composed of uniform hollow spheres about 200 nm in diameter. It is 

noted that the size of ZnCo2O4 is smaller than that of the Zn-Co-CSs precursor, indicating that 

the spheres have become slightly shrunken during the transformation process from the precursor 

to ZnCo2O4. Moreover, it is observed that the surface of the ZnCo2O4 microspheres is made up 

of many sintered ZnCo2O4 nanoparticles with the size of tens of nanometers. The hollow feature 

is further confirmed by the TEM results shown in Figure 1c. Further TEM analysis (Figure 1d) 

reveals that the ZnCo2O4 spheres possess an ultrathin shell (about 20 nm in thickness) composed 

of nanoparticles about several nanometers in size, among which numerous mesopores have been 
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generated. TEM images clearly show the porous structure of the ZnCo2O4 spheres, which may be 

caused by rapid mass transport through the shell during calcination. A more detailed HRTEM 

image shown in Figure 1e presents clear lattice fringes with interplanar distances of 0.24 nm, 

0.29 nm and 0.47 nm, corresponding to the (311), (220) and (111) planes of spinel ZnCo2O4, 

respectively. It is observed that the selected area electron diffraction (SAED) pattern displays 

well-defined rings (Figure 1f), demonstrating the polycrystalline nature of the ZnCo2O4 hollow 

spheres. Moreover, the molar ratio of Zn: Co: O from the EDS spectrum (Figure S4) is ∼1: 2: 4 

within the samples, further confirming the formation of ZnCo2O4 pure phase. The porosity and 

specific surface area of the ZnCo2O4 hollow spheres were characterized by N2 

adsorption/desorption isotherms and pore size distribution measurements. Figure 2b exhibits a 

pore size distribution in the range of 2 to 5 nm, which agrees well with what can be observed in 

the TEM images. It is calculated that the pore volume is 0.44 cm
3
 g

-1
. Remarkably, the porous 

ZnCo2O4 hollow spheres display a specific surface area of 172.62 m
2
 g

-1
. 
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Figure 1. (a) XRD pattern, (b) SEM image, (c, d) low-magnification TEM images, (e) HRTEM 

image and (f) corresponding SAED pattern of the as-prepared porous ZnCo2O4 hollow spheres. 
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Figure 2. (a) Nitrogen adsorption-desorption isotherm and (b) the corresponding pore size 

distribution of the as-prepared porous ZnCo2O4 hollow spheres. 

Figure 3a shows the XRD pattern of the as-obtained NiFe2O4 hollow spheres. It can be seen 

that all the diffraction peaks can be indexed to cubic NiFe2O4 phase with the lattice constants of 

a = b = c = 8.339 Å (space group Fd3m, JCPDS 10-325), without any detectable impurity. An 

SEM image (Figure 3b) reveals the high quality of the homogeneous and uniform NiFe2O4 

hollow spheres, with a particle size of about 250 nm. The TEM images in Figure 3c and 3d 

further confirm the hollow and porous structure of the as-prepared NiFe2O4 sample. The shells of 

the NiFe2O4 hollow spheres are about 20 nm in thickness, which are also composed of 

nanoparticles. HRTEM image (Figure 3e) demonstrates that individual NiFe2O4 nanoparticle has 

uniform lattice fringes. The lattice spacing is calculated to be 0.25 nm and 0.29 nm, which agrees 

well with the (311) and (220) planes of the NiFe2O4 (JCPDS No. 10-325). The SAED pattern 

(Figure 3f) shows well-defined rings, indicating that the as-prepared NiFe2O4 hollow spheres are 

polycrystalline. Moreover, we have prepared ZnSnO3 (JCPDS No. 28-1486) with porous 

structure by the same method (Figure 4a). From the SEM, TEM and HRTEM images (Figure 4b-

4e), it can be seen that the porous ZnSnO3 is also composed of hollow spheres with thin shells, 

which are constructed from nanoparticles about 10 nm in diameter. The corresponding SAED 

pattern (figure 4f) also demonstrates the polycrystalline characteristic of the porous ZnSnO3 
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hollow spheres. Furthermore, it is found that the obtained NiFe2O4 and ZnSnO3 hollow spheres 

both present a pore size distribution ranging from 2 to 5 nm (Figure S5), as well as high surface 

area of 156.35 m
2
 g

-1
 and 137.91 m

2
 g

-1
, respectively. 

 

Figure 3. (a) XRD pattern, (b) SEM image, (c, d) low-magnification TEM images, (e) HRTEM 

image and (f) corresponding SAED pattern of the as-prepared porous NiFe2O4 hollow spheres. 
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Figure 4. (a) XRD pattern, (b) SEM image, (c, d) low-magnification TEM images, (e) HRTEM 

image and (f) corresponding SAED pattern of the as-prepared porous ZnSnO3 hollow spheres. 

All in all, the MMO samples prepared by this method are composed of small hollow spheres 

with thin and porous shells, which ensure large electrode/electrolyte contact area, abundant 
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electroactive sites and fast electron/ion transport rate for electrochemical reactions, 

demonstrating their potential applications in some novel electronic devices. Herein, the 

supercapacitive properties of the as-prepared porous ZnCo2O4, NiFe2O4 and ZnSnO3 hollow 

spheres are investigated. 

3.2. Supercapacitive performances 

The supercapacitive properties of the MMO electrodes were evaluated in a three-electrode 

configuration. CV and galvanostatic charge-discharge measurements of the ZnCo2O4 electrode 

were performed in 2 M KOH. The representative CV profiles of ZnCo2O4 at different sweep 

rates of 5~50 mV s
-1

 are shown in Figure 5a. All the CV curves present a pair of well-defined 

redox peaks, which are distinctly different from those of electrical double layer capacitors 

(EDLCs), indicating that the electrochemical capacitance mainly originates from Faradaic redox 

reactions. The reversible conversion in accordance with the well-defined redox peaks may be 

described as follows:
21,22

  

  OHCoOOHOHOCo 222 2

2

42                           (4) 

  OHOHCoeOHCoOOH 22 )(                      (5) 

Galvanostatic charge-discharge behaviors of the ZnCo2O4 material were investigated at 

different current densities of 1~10 A g
-1

 within 0~0.55 V (vs. Hg/HgO). The nonlinear charge-

discharge curves present in Figure 5b clearly demonstrate the occurrence of typical Faradaic 

redox reactions, further confirming the pseudo-capacitance behavior of the ZnCo2O4 electrode, 

which agrees well with the CV results. The specific capacitances calculated from charge-

discharge tests are 1158, 1006, 925 and 845 F g
-1

 at 1, 2, 5 and 10 A g
-1

, respectively (Figure 5c). 

When the current density increases to 10 A g
-1

, the capacitance still retains 73% of the 

capacitance at 1 A g
-1

. These results suggest good rate capability of the ZnCo2O4 electrode.  
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Figure 5. Electrochemical properties of the porous ZnCo2O4 hollow spheres electrode in a three-

electrode measurement system. (a) CV curves at various sweep rates between 0 and 0.6 V (vs. 

Hg/HgO). (b) Galvanostatic charge-discharge curves with different currents. (c) Specific 

capacitance as a function of current density. (d) Cycling performance and coulombic efficiency 

at 1 A g
-1

. The inset in (d) presents the charge-discharge curves of the last 5 cycles.  

  Cycling stability and energy deliverable efficiency are also critical parameters for 

supercapacitors. As shown in Figure 5d, the Coulombic efficiency is as high as 98% even after 

2300 charge-discharge cycles, demonstrating excellent kinetic reversibility and good cycling 

stability of the porous ZnCo2O4 hollow spheres. It is observed that the discharge specific 

capacitance gradually increases in the initial 600 cycles. The increase of capacity may be 

attributed to the activation process for ZnCo2O4 with high porosity and hollow structure. The 

highest specific capacitance reaches 1192 F g
-1

, which still remains 1109 F g
-1

 after 2300 cycles, 

with a capacitance retention rate of 93.11%. The charge-discharge curves of the last five cycles 
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have been inserted in Figure 5d. A pair of well-defined charge-discharge plateaus is observed 

and the curve shapes are similar to those of the initial cycles. The above results further ratify the 

electrochemical reversibility of the porous ZnCo2O4 hollow spheres in energy storage 

applications. Moreover, the as-prepared porous NiFe2O4 and ZnSnO3 hollow spheres also display 

promising application as electrode materials for supercapacitors (Figure S6 and S7). 

 

Figure 6. Electrochemical properties of the ZnCo2O4//AC ASC device. (a) CV curves at various 

sweep rates with the working potential window of 1.3 V. (b) Galvanostatic charge-discharge 

curves with different currents. (c) Cycling performance at 1 A g
-1

. (d) Ragone plots and 

comparison with the previous reports. 

  To further evaluate the as-prepared ZnCo2O4 electrode for practical applications, ZnCo2O4//AC 

ASCs are fabricated. The working potential window of the ASC device is 1.3 V in 2 M KOH. 

Figure 6a shows the CV profiles of the assembled ZnCo2O4//AC at the scan rates of 2~20 mV s
-1

. 
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Each CV curve displays a cathodic peak and an anodic peak, demonstrating the pseudocapacitive 

property of ZnCo2O4//AC. Increasing the scan rates, the CV curves are still stable at 20 mV s
-1

, 

demonstrating fast charging and discharging characteristics. The galvanostatic charge-discharge 

testing of the capacitor was conducted with different currents (Figure 6b). The specific 

capacitance of ZnCo2O4//AC achieves 167.7 F g
-1

 at 1 A g
-1

 and it still remains 61.5 F g
-1

 at 10 A 

g
-1

. Figure 6c shows the cycling stability of ZnCo2O4//AC at a current density of 1 A g
 -1

. The 

capacitance retention rate is as high as 86.8% after 4000 cycles. The power performance of 

ZnCo2O4//AC is also presented in the Ragone plot. As shown in Figure 6d, the as-prepared 

ZnCo2O4//AC delivers an energy density of 39.36 Wh kg
-1

 at a power density of 650 W kg
-1

 and 

a power density of 7540 W kg
-1

 at an energy density of 17.8 Wh kg
-1

, which are higher than 

previously reported ZnCo2O4 nanowire//AC,
35

 ZnCo2O4@MnO2//α-Fe2O3
36

 and 

ZnCo2O4/PPy//PPy.
37 

 

  To investigate the structure durability
 
of the as-prepared porous mixed metal oxide hollow 

spheres,
 
the pristine ZnCo2O4 electrode and the cycled ZnCo2O4 electrode are compared in 

Figure S8. As shown in Figure S8b, after 2000 charge-discharge cycles, the ZnCo2O4 spheres are 

not so regular as the pristine electrode, but the sphere-like shape is still maintained well. TEM 

image shown in Figure S8c demonstrates that even after 2000 cycle at 1 A g
-1

, the ZnCo2O4 

material is still of hollow structure composed of nanoparticles without aggregation, further 

confirming the good stability of the porous hollow spheres. The good electrochemical properties 

of the as-prepared ZnCo2O4 hollow spheres may be due to their following merits: on one hand, 

the small size, hollow structure, high porosity and ultrathin shells could provide the ZnCo2O4 

material with a large surface area, which implies a large contact area for electrode and electrolyte, 

and abundant electroactive sites for the redox reactions. On the other hand, they effectively help 
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to accelerate the transportation/diffusion of electrons and ions, implying fast kinetics. 

Furthermore, the cavities resulting from the hollow structure and porous structure could 

significantly buffer the stress emerged during the electrochemical reaction process. So, their 

unique structural properties endow the as-obtained ZnCo2O4 hollow spheres with high discharge 

capacitance, excellent cycling stability and good rate performance as electrode materials for 

supercapacitors.  

4. CONCLUSIONS 

In summary, it has been demonstrated that the “ion adsorption-annealing” technique is very 

effective for synthesizing porous mixed metal oxide hollow spheres with ultrathin shells and 

high porosity. The unique structure is favorable for sufficient contact between 

electrode/electrolyte interfaces, thus provide abundant electrochemically active sites and fast 

electron and electrolyte ion transportation/diffusion. Last but not least, this structure can 

maintain well during charge-discharge process. The superior electrochemical performance of 

such porous ZnCo2O4 hollow spheres suggests that the porous hollow nanostructures, together 

with the simple synthesis approach are also expected to be useful in designing other high 

performance energy storage materials. 

ASSOCIATED CONTENT 
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Figure S1. XRD patterns of carbohydrate spheres and the Zn-Co-CSs precursor. 

Figure S2. (a, b) SEM images of carbohydrate spheres; (c, d) SEM images of the Zn-Co-CSs precursor.  

Figure S3. TGA curve of the Zn-Co-CSs precursor. 

Figure S4. EDS spectrum of the as-prepared porous ZnCo2O4 hollow spheres. 

Figure S5. Nitrogen adsorption-desorption isotherm and the corresponding pore size distribution of the as-

prepared samples: (a, b) porous NiFe2O4hollow spheres, (c, d) ZnSnO3 hollow spheres. 

Figure S6. Electrochemical properties of the porous NiFe2O4 hollow spheres electrode: (a) CV curves at 

different scan rates, (b) galvanostatic charge-discharge curves at different current densities, (c) rate performance, 

and (d) cycle life. The inset of is the charge-discharge curves of the last 5 cycles. 

Figure S7. CV curves of ZnSnO3 electrode at different scan rates in 1 M Na2SO4 aqueous electrolyte. 

Figure S8. (a) SEM image of the pristine ZnCo2O4 electrode, (b) SEM image and (c) TEM image of the cycled 

ZnCo2O4 electrode after 2000 cycles at 1 A g-1. 
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Supercapacitive properties of the as-prepared NiFe2O4 electrode and ZnSnO3 electrode  

    The capacitive performance of the as-obtained NiFe2O4 and ZnSnO3 hollow spheres were 

also investigated in three-electrode system in 2 M KOH and 1 M Na2SO4 aqueous electrolyte, 

respectively. From Figure S6a, it can be seen that the voltammetric currents of NiFe2O4 

electrode increase with the scan rate, showing the behavior similar to that of an ideal 

capacitor.[1] The specific capacitances were calculated from the corresponding galvanostatic 

discharge curves (Figure S6b) in the range of -1.0 V to 0 V at various current densities. The 

values of specific capacitances for NiFe2O4 composite are 220.1 F g-1 at 1 A g-1, 186.7 F g-1 at 

2 A g-1, 137.9 F g-1 at 5 A g-1 and 134.6 F g-1 at 10 A g-1, respectively. The cycle stability of 

the as-prepared NiFe2O4 electrode was tested by performing continuous charge-discharge 

cycles at a constant discharge current density of 1 A g-1. As shown in Figure S6d, the NiFe2O4 

electrode shows high specific capacitance of 262.2 F g-1 and it still remains 181.7 F g-1 after 

2000 cycles, with the capacity retention rate of 69.4%, showing good cycle stability of the as-

prepared NiFe2O4.  

Figure S7 shows that the electrochemical behavior of ZnSnO3 electrode is also similar to 

ideal capacitor and it delivers specific capacitance of 58.6 F g-1 at 5 mV s-1, 35.5 F g-1 at 10 

mV s-1 and 25.2 F g-1 at 20 mV s-1.   

[1]  Kumbhar, V.S.;  Jagadale, A.D.;  Shinde, N.M.;  Lokhande, C.D. Chemical synthesis of 

spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl. Surf. Sci. 

2012, 259, 39-43. 
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Figure S1. XRD patterns of carbohydrate spheres and the Zn-Co-CSs precursor. 

 

 

Figure S2. (a, b) SEM images of carbohydrate spheres; (c, d) SEM images of the Zn-Co-CSs 

precursor. 
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Figure S3. TGA curve of the Zn-Co-CSs precursor. 

 

 

 Figure S4. EDS spectrum of the as-prepared porous ZnCo2O4 hollow spheres. 
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Figure S5. Nitrogen adsorption-desorption isotherm and the corresponding pore size 

distribution of the as-prepared samples: (a, b) porous NiFe2O4hollow spheres, (c, d) ZnSnO3 

hollow spheres. 
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Figure S6. Electrochemical properties of the porous NiFe2O4 hollow spheres electrode: (a) 

CV curves at different scan rates, (b) galvanostatic charge-discharge curves at different 

current densities, (c) rate performance, and (d) cycle life. The inset of is the charge-discharge 

curves of the last 5 cycles. 

 

Figure S7. CV curves of ZnSnO3 electrode at different scan rates in 1 M Na2SO4 aqueous 

electrolyte. 
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Figure S8. (a) SEM image of the pristine ZnCo2O4 electrode, (b) SEM image and (c) TEM 

image of the cycled ZnCo2O4 electrode after 2000 cycles at 1 A g-1. 
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