51 research outputs found

    Weak antilocalization and electron-electron interaction in coupled multiple-channel transport in a Bi2_2Se3_3 thin film

    Full text link
    Electron transport properties of a topological insulator Bi2_2Se3_3 thin film are studied in Hall-bar geometry. The film with a thickness of 10 nm is grown by van der Waals epitaxy on fluorophlogopite mica and Hall-bar devices are fabricated from the as-grown film directly on the mica substrate. Weak antilocalization and electron-electron interaction effects are observed and analyzed at low temperatures. The phase-coherence length extracted from the measured weak antilocalization characteristics shows a strong power-law increase with decreasing temperature and the transport in the film is shown to occur via coupled multiple (topological surface and bulk states) channels. The conductivity of the film shows a logarithmically decrease with decreasing temperature and thus the electron-electron interaction plays a dominant role in quantum corrections to the conductivity of the film at low temperatures.Comment: 12 pages, 5 figure

    Colossal switchable photocurrents in topological Janus transition metal dichalcogenides

    Full text link
    Nonlinear optical properties, such as bulk photovoltaic effects, possess great potential in energy harvesting, photodetection, rectification, etc. To enable efficient light-current conversion, materials with strong photo-responsivity are highly desirable. In this work, we predict that monolayer Janus transition metal dichalcogenides (JTMDs) in the 1T' phase possess colossal nonlinear photoconductivity owing to their topological band mixing, strong inversion symmetry breaking, and small electronic bandgap. 1T' JTMDs have inverted bandgaps on the order of 10 meV and are exceptionally responsive to light in the terahertz (THz) range. By first-principles calculations, we reveal that 1T' JTMDs possess shift current (SC) conductivity as large as 2300 nm⋅μA/V22300 ~\rm nm \cdot \mu A / V^2, equivalent to a photo-responsivity of 2800 mA/W2800 ~\rm mA/W. The circular current (CC) conductivity of 1T' JTMDs is as large as 104 nm⋅μA/V210^4~ \rm nm \cdot \mu A / V^2. These remarkable photo-responsivities indicate that the 1T' JTMDs can serve as efficient photodetectors in the THz range. We also find that external stimuli such as the in-plane strain and out-of-plane electric field can induce topological phase transitions in 1T' JTMDs and that the SC can abruptly flip their directions. The abrupt change of the nonlinear photocurrent can be used to characterize the topological transition and has potential applications in 2D optomechanics and nonlinear optoelectronics

    Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow.

    Get PDF
    Since 2000, the phenology has advanced in some years and at some locations on the Qinghai-Tibetan Plateau, whereas it has been delayed in others. To understand the variations in spring vegetation growth in response to climate, we conducted both regional and experimental studies on the central Qinghai-Tibetan Plateau. We used the normalized difference vegetation index to identify correlations between climate and phenological greening, and found that greening correlated negatively with winter-spring time precipitation, but not with temperature. We used open top chambers to induce warming in an alpine meadow ecosystem from 2012 to 2014. Our results showed that in the early growing season, plant growth (represented by the net ecosystem CO2 exchange, NEE) was lower in the warmed plots than in the control plots. Late-season plant growth increased with warming relative to that under control conditions. These data suggest that the response of plant growth to warming is complex and non-intuitive in this system. Our results are consistent with the hypothesis that moisture limitation increases in early spring as temperature increases. The effects of moisture limitation on plant growth with increasing temperatures will have important ramifications for grazers in this system

    High quality and wafer-scale cubic silicon carbide single crystals

    Full text link
    Silicon carbide (SiC) is an important semiconductor material for fabricating power electronic devices that exhibit higher switch frequency, lower energy loss and substantial reduction both in size and weight in comparison with its Si-based counterparts1-4. Currently, most devices, such as metal-oxide-semiconductor field effect transistors, which are core devices used in electric vehicles, photovoltaic industry and other applications, are fabricated on a hexagonal polytype 4H-SiC because of its commercial availability5. Cubic silicon carbide (3C-SiC), the only cubic polytype, has a moderate band gap of 2.36 eV at room-temperature, but a superior mobility and thermal conduction than 4H-SiC4,6-11. Moreover, the much lower concentration of interfacial traps between insulating oxide gate and 3C-SiC helps fabricate reliable and long-life devices7-10,12-14. The growth of 3C-SiC crystals, however, has remained a challenge up to now despite of decades-long efforts by researchers because of its easy transformation into other polytypes during growth15-19, limiting the 3C-SiC based devices. Here, we report that 3C-SiC can be made thermodynamically favored from nucleation to growth on a 4H-SiC substrate by top-seeded solution growth technique(TSSG), beyond what's expected by classic nucleation theory. This enables the steady growth of quality and large sized 3C-SiC crystals (2~4-inch in diameter and 4.0~10.0 mm in thickness) sustainable. Our findings broaden the mechanism of hetero-seed crystal growth and provide a feasible route to mass production of 3C-SiC crystals,offering new opportunities to develop power electronic devices potentially with better performances than those based on 4H-SiC.Comment: 17 pages, 4 figure

    Correlations among the plasma concentrations of first-line anti-tuberculosis drugs and the physiological parameters influencing concentrations

    Get PDF
    Background: The plasma concentrations of the four most commonly used first-line anti-tuberculosis (TB) drugs, isoniazid (INH), rifampicin (RMP), ethambutol (EMB), and pyrazinamide (PZA), are often not within the therapeutic range. Insufficient drug exposure could lead to drug resistance and treatment failure, while excessive drug levels may lead to adverse reactions. The purpose of this study was to identify the physiological parameters influencing anti-TB drug concentrations.Methods: A retrospective cohort study was conducted. The 2-h plasma concentrations of the four drugs were measured by using the high-performance liquid chromatography-tandem mass spectrometry method.Results: A total of 317 patients were included in the study. The proportions of patients with INH, RMP, EMB, and PZA concentrations within the therapeutic range were 24.3%, 31.5%, 27.8%, and 18.6%, respectively. There were positive associations between the concentrations of INH and PZA and RMP and EMB, but negative associations were observed between the concentrations of INH and RMP, INH and EMB, RMP and PZA, and EMB and PZA. In the multivariate analysis, the influencing factors of the INH concentration were the PZA concentration, total bile acid (TBA), serum potassium, dose, direct bilirubin, prealbumin (PA), and albumin; those of the RMP concentration were PZA and EMB concentrations, weight, α-l-fucosidase (AFU), drinking, and dose; those of the EMB concentration were the RMP and PZA concentrations, creatinine, TBA and indirect bilirubin; and those of the PZA concentration were INH, RMP and EMB concentrations, sex, weight, uric acid and drinking.Conclusion: The complex correlations between the concentrations of the four first-line anti-TB drugs lead to a major challenge in dose adjustment to maintain all drugs within the therapeutic window. Levels of TBA, PA, AFU, and serum potassium should also be considered when adjusting the dose of the four drugs

    Assessment of the influence of using green tea waste and fish waste as soil amendments for biosolarization on the growth of lettuce (Lactuca sativa L. var. ramosa Hort.)

    Get PDF
    IntroductionSafe and efficient treatment of organic waste is crucial to developing a sustainable food system around the world. Soil biosolarization (SBS) is a soil treatment technique that can use organic solid wastes to treat the soil in a way that is alternative to the use of chemical fumigants to improve soil fertility in agriculture.MethodsIn this study, two types of organic food wastes, green tea waste (GTW) and fish waste (FW), were evaluated for the feasibility of being applied as soil amendments within simulations of high-temperature cycle SBS. The evaluation was conducted by execution of three groups of measurements: gas and organic volatile emission profile, residual soil phytotoxicity and weed suppression, and cultivar growth (Lactuca sativa L. var. ramosa Hort.).Results and DiscussionGreen tea waste contributed to elevated levels of soil respiration and the evolution of signature volatile organic compounds during the simulated SBS. In the soil amended with green tea waste and then undergoing SBS the phyto compatibility was restored after residual phytotoxicity dissipation and a complete weed suppression was achieved. By using an application rate of 2.5% (w/w, mass fraction of green tea waste in total soil-waste mixture) green tea waste cultivar growth comparable to that of the non-treated soil (NTS) group was attained, with a more efficient nitrogen utilization and higher residual soil nitrogen content enabling the improvement of the continuous cropping system. FW at 1% (w/w, mass fraction of FW in total soil-waste mixture) promoted cultivar growth despite the significant reduction of the nitrogen (p value=0.02) and phosphorus (p value=0.03) contents in the cultivar leaves. A significant increase of the sodium content together with an increase of iron and chromium, which exceeded the permissible limit, were observed. These results provide new information about amendment selection for the SBS process

    Designing Artificial Two-Dimensional Landscapes via Room-Temperature Atomic-Layer Substitution

    Full text link
    Manipulating materials with atomic-scale precision is essential for the development of next-generation material design toolbox. Tremendous efforts have been made to advance the compositional, structural, and spatial accuracy of material deposition and patterning. The family of 2D materials provides an ideal platform to realize atomic-level material architectures. The wide and rich physics of these materials have led to fabrication of heterostructures, superlattices, and twisted structures with breakthrough discoveries and applications. Here, we report a novel atomic-scale material design tool that selectively breaks and forms chemical bonds of 2D materials at room temperature, called atomic-layer substitution (ALS), through which we can substitute the top layer chalcogen atoms within the 3-atom-thick transition-metal dichalcogenides using arbitrary patterns. Flipping the layer via transfer allows us to perform the same procedure on the other side, yielding programmable in-plane multi-heterostructures with different out-of-plane crystal symmetry and electric polarization. First-principle calculations elucidate how the ALS process is overall exothermic in energy and only has a small reaction barrier, facilitating the reaction to occur at room temperature. Optical characterizations confirm the fidelity of this design approach, while TEM shows the direct evidence of Janus structure and suggests the atomic transition at the interface of designed heterostructure. Finally, transport and Kelvin probe measurements on MoXY (X,Y=S,Se; X and Y corresponding to the bottom and top layers) lateral multi-heterostructures reveal the surface potential and dipole orientation of each region, and the barrier height between them. Our approach for designing artificial 2D landscape down to a single layer of atoms can lead to unique electronic, photonic and mechanical properties previously not found in nature

    Physically based morphing of point-sampled surfaces

    No full text
    This paper presents an innovative method for naturally and smoothly morphing point-sampled surfaces via dynamic meshless simulation on point-sampled surfaces. While most existing literature on shape morphing emphasizes the issue of finding a good correspondence map between two object representations, this research primarily investigates the challenging problem of how to find a smooth, physically-meaningful transition path between two homeomorphic point-set surfaces. We analyze the deformation of surface involved in the morphing process using concepts in differential geometry and continuum mechanics. The morphing paths can be determined by optimizing an energy functional which characterizes the intrinsic deformation of the surface away from its rest shape. As demonstrated in the examples, our method automatically produces a series of natural and physically-plausible in-between shapes, which greatly alleviates the shrinking, stretching, and self-intersection problems that often occur when linear interpolation is employed for the morphing of two objects. We envision that our new technique will continue to broaden the application scope of point-set surfaces and their dynamic animation
    • …
    corecore