14 research outputs found
A Comprehensive Analysis of the Chorion Locus in Silkmoth
Despite more than 40 years of intense study, essential features of the silkmoth chorion (eggshell) are still not fully understood. To determine the precise structure of the chorion locus, we performed extensive EST analysis, constructed a bacterial artificial chromosome (BAC) contig, and obtained a continuous genomic sequence of 871,711 base pairs. We annotated 127 chorion genes in two segments interrupted by a 164 kb region with 5 non-chorion genes, orthologs of which were on chorion bearing scaffolds in 4 ditrysian families. Detailed transcriptome analysis revealed expression throughout choriogenesis of most chorion genes originally categorized as “middle”, and evidence for diverse regulatory mechanisms including cis-elements, alternative splicing and promoter utilization, and antisense RNA. Phylogenetic analysis revealed multigene family associations and faster evolution of early chorion genes and transcriptionally active pseudogenes. Proteomics analysis identified 99 chorion proteins in the eggshell and micropyle localization of 1 early and 6 Hc chorion proteins
Construction, Complete Sequence, and Annotation of a BAC Contig Covering the Silkworm Chorion Locus
The silkmoth chorion was studied extensively by F.C. Kafatos’ group for almost 40 years. However, the complete structure of the chorion locus was not obtained in the genome sequence of Bombyx mori published in 2008 due to repetitive sequences, resulting in gaps and an incomplete view of the locus. To obtain the complete sequence of the chorion locus, expressed sequence tags (ESTs) derived from follicular epithelium cells were used as probes to screen a bacterial artificial chromosome (BAC) library. Seven BACs were selected to construct a contig which covered the whole chorion locus. By Sanger sequencing, we successfully obtained complete sequences of the chorion locus spanning 871,711 base pairs on chromosome 2, where we annotated 127 chorion genes. The dataset reported here will recruit more researchers to revisit one of the oldest model systems which has been used to study developmentally regulated gene expression. It also provides insights into egg development and fertilization mechanisms and is relevant to applications related to improvements in breeding procedures and transgenesis
Expression map of a complete set of gustatory receptor genes in chemosensory organs of \u3cem\u3eBombyx mori\u3c/em\u3e
Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67, were expressed exclusively in larval tissues, the BmGr27–BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for finding genes involved in plant-insect interactions in Lepidoptera and establishing correlations between these genes and vital insect behaviors like host plant selection and courtship for mating
Ice storm damage to oak forests in subtropical China
Ice storms, as important sources of frequent and injurious disturbances, drive forest dynamics in the Northern Hemisphere. However, stand-level differential vulnerability to ice storms and the associated factors that predispose forest stands remain unclear. This is particularly concerning in the subtropics where the frequency of ice storms is predicted to increase with global warming. Here we assessed how the impact on three forest stands (early and late secondary-growth forests, and old-growth forests) differed after an extreme ice storm during 20–21 March 2022, and identified the abiotic and biotic factors that determine the damage intensity in the Shennongjia World Natural Heritage Site, a biodiversity conservation hotspot in central China. We found a stand-specific ‘mid-domain effect’ where the late secondary-growth forest sustained the most severe damage, the early secondary-growth forest sustained the least, and the old-growth forest suffered an intermediate amount. ‘Crown broken’ was the most severe damage type across all three forest stands, although the proportion of ‘branch broken’ was also high in the old-growth forest. Topography played a significant role in determining the vulnerability of the early secondary-growth forest to severe ice storms whereas the forest structure and composition were important factors in explaining the damage rates in the old-growth forest, although they differed among the damage categories. In contrast, topography, forest structure and composition generally explain the intensity of damage in the late secondary-growth forests. Our results highlight that, in subtropical forests, the intensity of damage caused by severe ice storms and related determining factors are stand-level dependent. We also suggest exploring potential management strategies (e.g., slow-growing hardwood species that can resist storms should be the main species for reforestation in early secondary-growth forests) to mitigate the risk of future severe ice storms, as well as other wind-related climatic extremes
Assembly of peptide–thiophene conjugates: the influence of peptide content and location
<div><p>Biomolecule-directed self-assembly of π-conjugated oligomers has attracted great attention in the past decade. In this contribution, two conjugates composed of quaterthiophene and tetrapeptide (Gly-Val-Gly-Val) were synthesised, namely peptide–thiophene–peptide (PTP) and thiophene–peptide–thiophene (TPT), to investigate the influence of peptide content ratio and its location in the molecular structures on the nanostructures and properties of the assemblies. Both conjugates formed organogels consisting of left-handed twisted nanostructures; however, anti-parallel β-sheets were observed in PTP while parallel β-sheets were obtained for TPT, although in both cases oligothiophenes adopted an H-like stacking mode. Obvious solvent-induced supramolecular chirality inversion from the oligothiophene segment was observed for PTP while such phenomenon was not clear for TPT. PTP and TPT gels also showed different stabilities towards temperature increase, as evidenced by variable-temperature circular dichroism study. From the data, it is suggested that the rational design of the location and ratio of peptide plays a key role in constructing materials with determined properties based on peptide–thiophene conjugates.</p></div