31 research outputs found

    An acousto-optic modulator based bi-frequency interferometer for quantum technology

    Full text link
    Acousto-optic modulators (AOMs) have been widely used in quantum optical technology, but the non-ideal diffraction efficiency limits its application in a quantum system. Here we demonstrate a bi-frequency interferometer using AOMs as both the beam-splitter and the beam-combiner. The intensity of the input light can be as low as the single photon level, and the interferometer can work in a chopped phase locking mode. The modulation for the phase locking scheme is realized on the beam-splitting AOM driven by specially designed radio frequency signal, which avoids using extra optical modulators and makes the quantum efficiency of the system as high as (95Ā±1)%(95\pm1)\%. By optimizing the factors that affect the mode matching, the visibility of the beating signal for the interferometer is (99.5Ā±0.2)%(99.5\pm0.2)\%. This near prefect visibility allows the interferometer to be applied in high efficiency quantum technical schemes while leaving the diffraction efficiencies of each AOM for about 50%50\%. This greatly reduced the demand for the driving of AOMs.Comment: 6 pages, 4 figure

    Complete temporal mode analysis in pulse-pumped ļ¬ber-optical parametric ampliļ¬er for continuous variable entanglement generation

    Get PDF
    Mode matching plays an important role in measuring the continuous variable entanglement. For the signal and idler twin beams generated by a pulse pumped fiber optical parametric amplifier (FOPA), the spatial mode matching is automatically achieved in single mode fiber, but the temporal mode property is complicated because it is highly sensitive to the dispersion and the gain of the FOPA. We study the temporal mode structure and derive the input-output relation for each temporal mode of signal and idler beams after decomposing the joint spectral function of twin beams with the singular-value decomposition method. We analyze the measurement of the quadrature-amplitude entanglement, and find mode matching between the multi-mode twin beams and the local oscillators of homodyne detection systems is crucial to achieve a high degree of entanglement. The results show that the noise contributed by the temporal modes nonorthogonal to local oscillator may be much larger than the vacuum noise, so the mode mis-match can not be accounted for by merely introducing an effective loss. Our study will be useful for developing a source of high quality continuous variable entanglement by using the FOPA

    Multi-mode quantum correlation generated from an unbalanced SU(1,1) interferometer using ultra-short laser pulses as pump

    Full text link
    Multi-mode entanglement is one of the critical resource in quantum information technology. Generating large scale multi-mode entanglement state by coherently combining time-delayed continuous variables Einstein-Podolsky-Rosen pairs with linear beam-splitters has been widely studied recently. Here we theoretically investigate the multi-mode quantum correlation property of the optical fields generated from an unbalanced SU(1,1) interferometer pumped ultra-short pulses, which generates multi-mode entangled state by using a non-degenerate parametric processes to coherently combine delayed Einstein-Podolsky-Rosen pairs in different frequency band. The covariance matrix of the generated multi-mode state is derived analytically for arbitrary mode number MM within adjacent timing slot, which shows a given mode is maximally correlated to 5 other modes. Based on the derived covariance matrix, both photon number correlation and quadrature amplitude correlation of the generated state is analyzed. We also extend our analyzing method to the scheme of generating entangled state by using linear beam splitter as a coherent combiner of delayed EPR pairs, and compare the states generated by the two coherently combining schemes. Our result provides a comprehensive theoretical description on the quantum correlations generated from an unbalanced SU(1,1) interferometer within Gaussian system range, and will offer more perspectives to quantum information technology.Comment: 13 pages, 4 figure

    Effect of chromatic dispersion induced chirp on the temporal coherence property of individual beam from spontaneous four wave mixing

    Full text link
    Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. To understand the effect of chirp on the temporal coherence property, two series of experiments are investigated by introducing different amount of chirp into either the pulsed pump or individual signal (idler) beam. In the first one, based on spontaneous four wave mixing in a piece of optical fiber, the intensity correlation function of the filtered individual signal beam, which characterizes the degree of temporal coherence, is measured as a function of the chirp of pump. The results demonstrate that the chirp of pump pulses decreases the degree of temporal coherence. In the second one, a Hong-Ou-Mandel type two-photon interference experiment with the signal beams generated in two different fibers is carried out. The results illustrate that the chirp of individual beam does not change the temporal coherence degree, but affect the temporal mode matching. To achieve high visibility, apart from improving the coherence degree by minimizing the chirp of pump, mode matching should be optimized by managing the chirps of individual beams.Comment: 17pages, 4figure

    Quantum information tapping using a fiber optical parametric amplifier with noise figure improved by correlated inputs

    Get PDF
    One of the important function in optical communication system is the distribution of information encoded in an optical beam. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7+-0.1 dB and 0.84+-0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti=1.47+-0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network.Comment: 28 pages, 6 figure

    Quantum entangled Sagnac interferometer

    Full text link
    SU(1,1) interferometer (SUI) is a novel type of interferometer that uses directly entangled quantum fields for sensing phase change. For rotational sensing, Sagnac geometry is usually adopted. However, because SUI depends on the phase sum of the two arms, traditional Sagnac geometry, when applied to SUI, will result in null signal. In this paper, we modify the traditional Sagnac interferometer by nesting SU(1,1) interferometers inside. We show that the rotational signal comes from two parts labeled as "classical" and "quantum", respectively, and the quantum part, where quantum entangled fields are used for sensing, has rotational signal enhanced by a factor related to the gain of the SUI.Comment: 5 pages, 3 figure

    Distributed quantum sensing in a continuous variable entangled network

    Full text link
    Networking plays a ubiquitous role in quantum technology. It is an integral part of quantum communication and has significant potential for upscaling quantum computer technologies that are otherwise not scalable. Recently, it was realized that sensing of multiple spatially distributed parameters may also benefit from an entangled quantum network. Here we experimentally demonstrate how sensing of an averaged phase shift among four distributed nodes benefits from an entangled quantum network. Using a four-mode entangled continuous variable (CV) state, we demonstrate deterministic quantum phase sensing with a precision beyond what is attainable with separable probes. The techniques behind this result can have direct applications in a number of primitives ranging from biological imaging to quantum networks of atomic clocks
    corecore