8 research outputs found

    EDDA: An Efficient Distributed Data Replication Algorithm in VANETs

    Get PDF
    Efficient data dissemination in vehicular ad hoc networks (VANETs) is a challenging issue due to the dynamic nature of the network. To improve the performance of data dissemination, we study distributed data replication algorithms in VANETs for exchanging information and computing in an arbitrarily-connected network of vehicle nodes. To achieve low dissemination delay and improve the network performance, we control the number of message copies that can be disseminated in the network and then propose an efficient distributed data replication algorithm (EDDA). The key idea is to let the data carrier distribute the data dissemination tasks to multiple nodes to speed up the dissemination process. We calculate the number of communication stages for the network to enter into a balanced status and show that the proposed distributed algorithm can converge to a consensus in a small number of communication stages. Most of the theoretical results described in this paper are to study the complexity of network convergence. The lower bound and upper bound are also provided in the analysis of the algorithm. Simulation results show that the proposed EDDA can efficiently disseminate messages to vehicles in a specific area with low dissemination delay and system overhead

    EDDA: An Efficient Distributed Data Replication Algorithm in VANETs

    Get PDF
    Efficient data dissemination in vehicular ad hoc networks (VANETs) is a challenging issue due to the dynamic nature of the network. To improve the performance of data dissemination, we study distributed data replication algorithms in VANETs for exchanging information and computing in an arbitrarily-connected network of vehicle nodes. To achieve low dissemination delay and improve the network performance, we control the number of message copies that can be disseminated in the network and then propose an efficient distributed data replication algorithm (EDDA). The key idea is to let the data carrier distribute the data dissemination tasks to multiple nodes to speed up the dissemination process. We calculate the number of communication stages for the network to enter into a balanced status and show that the proposed distributed algorithm can converge to a consensus in a small number of communication stages. Most of the theoretical results described in this paper are to study the complexity of network convergence. The lower bound and upper bound are also provided in the analysis of the algorithm. Simulation results show that the proposed EDDA can efficiently disseminate messages to vehicles in a specific area with low dissemination delay and system overhead

    XRRA1 Targets ATM/CHK1/2-Mediated DNA Repair in Colorectal Cancer

    No full text
    X-ray radiation resistance associated 1 (XRRA1) has been found to regulate the response of human tumor and normal cells to X-radiation (XR). Although XRRA1 overexpression is known to be involved in cancer cell response to XR, there are no reports about whether the expression of XRRA1 in tumors can adjust radioresistance. It is widely known that cell cycle arrest could cause radioresistance. We found that blocked XRRA1 expression could lead to cell cycle G2/M arrest by the regulation of cyclin A, cyclin E, and p21 proteins in colorectal cancer (CRC) and expression of XRRA1 reduced cell cycle arrest and increased cell proliferation in CRC. However, whether regulation of the cell cycle by XRRA1 can influence radioresistance is poorly characterized. Correspondingly, DNA repair can effectively lead to radioresistance. In our study, when cancer cells were exposed to drugs and ionizing radiation, low expression of XRRA1 could increase the phosphorylation of DNA repair pathway factors CHK1, CHK2, and ATM and reduce the expression of Îł-H2AX, which is believed to participate in DNA repair in the nucleus. Crucially, our results identify a novel link between XRRA1 and the ATM/CHK1/2 pathway and suggest that XRRA1 is involved in a DNA damage response that drives radio- and chemoresistance by regulating the ATM/CHK1/2 pathway
    corecore