92 research outputs found

    Expression dynamics of phytochrome genes for the shade-avoidance response in densely direct-seeding rice

    Get PDF
    Because of labor shortages or resource scarcity, direct seeding is the preferred method for rice (Oryza sativa. L) cultivation, and it necessitates direct seeding at the current density. In this study, two density of direct seeding with high and normal density were selected to identify the genes involved in shade-avoidance syndrome. Phenotypic and gene expression analysis showed that densely direct seeding (DDS) causes a set of acclimation responses that either induce shade avoidance or toleration. When compared to normal direct seeding (NDS), plants cultivated by DDS exhibit constitutive shade-avoidance syndrome (SAS), in which the accompanying solar radiation drops rapidly from the middle leaf to the base leaf during flowering. Simulation of shade causes rapid reduction in phytochrome gene expression, changes in the expression of multiple miR156 or miR172 genes and photoperiod-related genes, all of which leads to early flowering and alterations in the plant architecture. Furthermore, DDS causes senescence by downregulating the expression of chloroplast synthesis-related genes throughout almost the entire stage. Our findings revealed that DDS is linked to SAS, which can be employed to breed density-tolerant rice varieties more easily and widely

    Diverse genetic mechanisms underlie worldwide convergent rice feralization

    Get PDF
    Background: Worldwide feralization of crop species into agricultural weeds threatens global food security. Weedy rice is a feral form of rice that infests paddies worldwide and aggressively outcompetes cultivated varieties. Despite increasing attention in recent years, a comprehensive understanding of the origins of weedy crop relatives and how a universal feralization process acts at the genomic and molecular level to allow the rapid adaptation to weediness are still yet to be explored. Results: We use whole-genome sequencing to examine the origin and adaptation of 524 global weedy rice samples representing all major regions of rice cultivation. Weed populations have evolved multiple times from cultivated rice, and a strikingly high proportion of contemporary Asian weed strains can be traced to a few Green Revolution cultivars that were widely grown in the late twentieth century. Latin American weedy rice stands out in having originated through extensive hybridization. Selection scans indicate that most genomic regions underlying weedy adaptations do not overlap with domestication targets of selection, suggesting that feralization occurs largely through changes at loci unrelated to domestication. Conclusions: This is the first investigation to provide detailed genomic characterizations of weedy rice on a global scale, and the results reveal diverse genetic mechanisms underlying worldwide convergent rice feralization

    The complete chloroplast genome of weedy rice Oryza sativa f. spontanea

    No full text
    The emergence of weedy rice (Oryza sativa f. spontanea) has been considered as a serious global agricultural problem in recent decades. To better understand its speciation, here we assembled the complete chloroplast genome of O. sativa f. spontanea with the length of 134,502 bp. The assembly contains a large single-copy (LSC, 80,549 bp), a small single-copy (SSC, 12,347 bp) and a pair of inverted repeats (IRa and IRb, 20,803 bp each). A total of 132 unique genes were annotated, including 82 protein-coding genes, 42 tRNA genes and eight rRNA genes. Phylogenetic analysis showed that O. sativa f. spontanea (indica type) appears closely related to cultivated indica rice rather than wild rice, supporting the hypothesis that weedy rice originated from cultivated rice
    • …
    corecore