16 research outputs found

    Sensitivity Enhancement of Strain Sensing Utilizing a Differential Pair of Fiber Bragg Gratings

    Get PDF
    In strain measurement applications, the matched fiber Bragg gratings (FBG) method is generally used to reduce temperature dependence effects. The FBG parameters have to be designed to meet the requirements by the particular application. The bandwidth and slope of the FBG has to be balanced well, according to the measurement range, accuracy and sensitivity. A sensitivity enhanced strain demodulation method without sacrificing the measurement range for FBG sensing systems is proposed and demonstrated utilizing a pair of reference FBGs. One of the reference FBGs and the sensing FBG have almost the same Bragg wavelength, while the other reference FBGs has a Bragg wavelength offset relative to the sensing FBG. Reflected optical signals from the sensing FBG pass through two reference FBGs, and subtract from each other after the detection. Doubled strain measurement sensitivity is obtained by static rail load experiments compared to the general matched grating approach, and further verified in dynamic load experiments. Experimental results indicate that such a method could be used for real-time rail strain monitoring applications

    Mutations in porin LamB contribute to ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae.

    Get PDF
    Ceftazidime-avibactam (CAZ-AVI) shows promising activity against carbapenem-resistant Klebsiella pneumoniae (CRKP), however, CAZ-AVI resistance have emerged recently. Mutations in KPCs, porins OmpK35 and/or OmpK36, and PBPs are known to contribute to the resistance to CAZ-AVI in CRKP. To identify novel CAZ-AVI resistance mechanism, we generated 10 CAZ-AVI-resistant strains from 14 CAZ-AVI susceptible KPC-producing K. pneumoniae (KPC-Kp) strains through in vitro multipassage resistance selection using low concentrations of CAZ-AVI. Comparative genomic analysis for the original and derived mutants identified CAZ-AVI resistance-associated mutations in KPCs, PBP3 (encoded by ftsI), and LamB, an outer membrane maltoporin. CAZ-AVI susceptible KPC-Kp strains became resistant when complemented with mutated blaKPC genes. Complementation experiments also showed that a plasmid borne copy of wild-type lamB or ftsI gene reduced the MIC value of CAZ-AVI in the induced resistant strains. In addition, blaKPC expression level increased in four of the six CAZ-AVI-resistant strains without KPC mutations, indicating a probable association between increased blaKPC expression and increased resistance in these strains. In conclusion, we here identified a novel mechanism of CAZ-AVI resistance associated with mutations in porin LamB in KPC-Kp

    Global emergence of a hypervirulent carbapenem-resistant <i>Escherichia coli </i>ST410 clone

    Get PDF
    Carbapenem-resistant Escherichia coli (CREC) ST410 has recently emerged as a major global health problem. Here, we report a shift in CREC prevalence in Chinese hospitals between 2017 and 2021 with ST410 becoming the most commonly isolated sequence type. Genomic analysis identifies a hypervirulent CREC ST410 clone, B5/H24RxC, which caused two separate outbreaks in a children's hospital. It may have emerged from the previously characterised B4/H24RxC in 2006 and has been isolated in ten other countries from 2015 to 2021. Compared with B4/H24RxC, B5/H24RxC lacks the blaOXA-181-bearing X3 plasmid, but carries a F-type plasmid containing blaNDM-5. Most of B5/H24RxC also carry a high pathogenicity island and a novel O-antigen gene cluster. We find that B5/H24RxC grew faster in vitro and is more virulent in vivo. The identification of this newly emerged but already globally disseminated hypervirulent CREC clone, highlights the ongoing evolution of ST410 towards increased resistance and virulence. </p

    Effects of Tip Clearance and Impeller Eccentricity on the Aerodynamic Performance of Mixed Flow Fan

    No full text
    The tip clearance and eccentricity of the impeller will affect the aerodynamic performance of the fan, and the impeller installation and vibration characteristics are relatively highly required if the tip clearance is too small. A reasonable tip clearance and excellent coaxially are necessary to ensure that the impeller does not rub with the shell and has superior aerodynamic performance when the fan is working. In the current study, a mixed flow fan was taken as the object and experimental explorations were performed on the C-type test rig designed according to GB/T1236 2000 Industrial fans-performance testing using standardized airways. By moving the airways to change the tip clearance, it was found that an overlarge tip clearance made the fan efficiency decrease significantly, and the efficiency change gradient was large. However, the gradient of efficiency change became smaller when reaching a certain clearance. Similarly, as the eccentricity became larger, the efficiency also decreased. To explore the influence of the optimal clearance and eccentricity of the fan on the fan’s performance, numerical simulations of the flow field inside the fan were carried out using FLUENT software corresponding to the experimental conditions. The influence of the tip clearance and eccentricity on the aerodynamic performance of the fan was revealed from the energy leakage perspective. Through theoretical and experimental analysis, we try to provide guidance on the design, installation and commissioning of fan tip clearance

    Enhanced Solubility and Antitumor Activity of Annona Squamosa Seed Oil via Nanoparticles Stabilized with TPGS: Preparation and In Vitro and In Vivo Evaluation

    No full text
    Annona squamosa seed oil (ASSO), which is a waste product in the extraction of annonaceous acetogenins (ACGs), displays good antitumor activity against a variety of tumor cells. However, ASSO is insoluble and has low bioavailability. In order to improve the solubility and application value of ASSO, the seed oil nanoparticles (ASSO-NPs) were successfully prepared only using TPGS as a stabilizer. ASSO-NPs obtained were spherical with a uniform size (less than 200 nm). ASSO-NPs showed the good storage stability at 25 ± 2 °C and were suitable for both oral administration and intravenous injection. The antitumor study in vitro and in vivo demonstrated more enhanced antitumor efficacy of ASSO-NPs than free ASSO. The ASSO-NPs group (15 mg/kg) had the highest tumor inhibition rate (TIR) of 69.8%, greater than the ASSO solution (52.7%, 135 mg/kg, p < 0.05) in 4T1 tumor-bearing mice. The in vivo biodistribution data displayed that the fluorescence intensity of ASSO/DiR-NPs in tumor was similar to that in liver in the presence of the reticuloendothelial system. Besides, the relative tumor-targeting index (RTTI) of (ACGs + ASSO)-NPs was 1.47-fold that of ACGs delivered alone, and there is great potential in ASSO-NPs as tumor-targeted delivery vehicles. In this study, ASSO-NPs were firstly prepared by a very simple method with fewer excipients, which improved the solubility and antitumor activity of the ASSO, displaying a good prospect in the in vivo delivery of natural bioactive compounds

    Selective Adsorption of Ag+ on a New Cyanuric-Thiosemicarbazide Chelating Resin with High Capacity from Acid Solutions

    No full text
    A new cyanuric-thiosemicarbazid (TSC-CC) chelating resin was synthesized and employed to selectively adsorb Ag+ from acid solutions. The effects of acid concentration, initial concentration of Ag+, contact time and coexisting ions were investigated. The optimal acid concentration was 0.5 mol/L. The adsorption capacity of Ag+ reached 872.63 mg/g at acid concentration of 0.5 mol/L. The adsorption isotherm was fitted well with the Langmuir isotherm model and the kinetic data preferably followed the pseudo-second order model. The chelating resin showed a good selectivity for the Ag+ adsorption from acid solutions. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Scanning electron microscopy/energy dispersive spectrometer (SEM-EDS) and X-ray photoelectron spectroscopy (XPS) were used to study the adsorption mechanism. The chelating and ionic interaction was mainly adsorption mechanism. The adsorbent presents a great potential in selective recovery Ag+ from acid solutions due to the advantage of high adsorption capacity and adapting strongly acidic condition. The recyclability indicated that the (TSC-CC) resin had a good stability and can be recycled as a promising agent for removal of Ag+

    Adaptive Evolution Compensated for the Plasmid Fitness Costs Brought by Specific Genetic Conflicts

    No full text
    New Delhi metallo-β-lactamase (NDM)-carrying IncX3 plasmids is important in the transmission of carbapenem resistance in Escherichia coli. Fitness costs related to plasmid carriage are expected to limit gene exchange; however, the causes of these fitness costs are poorly understood. Compensatory mutations are believed to ameliorate plasmid fitness costs and enable the plasmid’s wide spread, suggesting that such costs are caused by specific plasmid–host genetic conflicts. By combining conjugation tests and experimental evolution with comparative genetic analysis, we showed here that the fitness costs related to ndm/IncX3 plasmids in E. coli C600 are caused by co-mutations of multiple host chromosomal genes related to sugar metabolism and cell membrane function. Adaptive evolution revealed that mutations in genes associated with oxidative stress, nucleotide and short-chain fatty acid metabolism, and cell membranes ameliorated the costs associated with plasmid carriage. Specific genetic conflicts associated with the ndm/IncX3 plasmid in E. coli C600 involve metabolism and cell-membrane-related genes, which could be ameliorated by compensatory mutations. Collectively, our findings could explain the wide spread of IncX3 plasmids in bacterial genomes, despite their potential cost

    Antibiotic Prescription Patterns for Acute Respiratory Infections in Rural Primary Healthcare Settings in Guangdong, China: Analysis of 162,742 Outpatient Prescriptions

    No full text
    Overuse and inappropriate use of antibiotics are important contributors to bacterial antimicrobial resistance (AMR), especially in ambulatory primary healthcare (PHC) settings in low- and middle-income countries. This study aimed to investigate antibiotic prescription patterns among patients with acute respiratory infections (ARIs) in rural PHC facilities in the Guangdong Province, China. A total of 444,979 outpatient prescriptions were extracted from the electronic medical record system of 35 township health centers (THCs) and 2 community health centers (CHCs) between November 2017 and October 2018. We used the chi-square test to analyze the antibiotic prescription patterns and binary logistic regression to explore patient-related factors associated with antibiotic prescriptions. Of the 162,742 ARI prescriptions, 85.57% (n = 139,259) included at least one antibiotic. Among the 139,259 prescriptions with antibiotics, 37.82% (n = 52,666) included two or more antibiotics, 55.29% (n = 76,993) included parenteral antibiotics, and 56.62% (n = 78,852) included Watch group antibiotics. The binary logistic regression indicated that (1) female patients were slightly less likely to be prescribed antibiotics than males (adjusted odds ratio (OR) = 0.954, 95% confidence interval [CI] [0.928–0.981]; p = 0.001); and (2) compared to patients aged ≤5 years, those who were 6–15 years old (adjusted OR = 1.907, 95% CI [1.840–1.978]; p p 60 years old (adjusted OR = 1.915, 95% CI [1.810–2.026]; p < 0.001) were more likely to be prescribed antibiotics. The overuse and irrational use of antibiotics in PHC settings remain major healthcare challenges in rural Guangdong. Thus, it is imperative to implement targeted antimicrobial stewardship (AMS) policies to address this problem

    Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in IκBα/MAPK/ERK signaling pathways

    No full text
    Schisandra chinensis Baill is a Chinese traditional medicine with multiple pharmacological activities. In this study, chicanine, one of the major lignan compounds of Schiandra chinesis, was investigated for suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (RAW 264.7 cells). Chicanine was found to have anti-infammatory properties with the inhibition of nitric oxide (NO) and Prostaglandin E (2) (PGE2) production and nuclear factor-κB (NF-κB) signaling in LPS-stimulated RAW 264.7 cells with no cytotoxic effects. Treatment of RAW 264.7 cells with chicanine down-regulated LPS-induced expression of pro-inflammatory cytokines including TNFα, IL-1β, MCP-1, G-CSF, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). These inhibitory effects were found with the blockage of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases 1 and 2 (ERK 1/2), and also IκB-α phosphorylation. These results indicated that anti-inflammatory actions of chicanine in macrophages involved inhibition of LPS-induced TLR4-IκBα/MAPK/ERK signaling pathways
    corecore