5 research outputs found
Trapping electrons in a room-temperature microwave Paul trap
We demonstrate trapping of electrons in a millimeter-sized quadrupole Paul
trap driven at 1.6~GHz in a room-temperature ultra-high vacuum setup. Cold
electrons are introduced into the trap by ionization of atomic calcium via
Rydberg states and stay confined by microwave and static electric fields for
several tens of milliseconds. A fraction of these electrons remain trapped
longer and show no measurable loss for measurement times up to a second.
Electronic excitation of the motion reveals secular frequencies which can be
tuned over a range of several tens to hundreds of MHz. Operating a similar
electron Paul trap in a cryogenic environment may provide a platform for
all-electric quantum computing with trapped electron spin qubits.Comment: Version accepted by PR
Bio-mineralization of virus-like particles by metal-organic framework nanoparticles enhances the thermostability and immune responses of the vaccines.
peer reviewedVirus-like particle (VLPs) vaccines have been extensively studied due to their good immunogenicity and safety; however, they highly rely on cold-chain storage and transportation. Nanotechnology of bio-mineralization as a useful strategy has been employed to improve the thermal stability and immunogenicity of VLPs. A zeolitic imidazole framework (ZIF-8), a core-shell structured nanocomposite, was applied to encapsulate foot-and-mouth disease virus (FMDV) VLPs. It was found that the ZIF-8 shell enhanced the heat resistance of VLPs and promoted their ability to be taken up by cells and escape from lysosomes. The VLPs-ZIF-8 easily activated antigen-presenting cells (APCs), triggered higher secretion levels of cytokines, and elicited stronger immune responses than VLPs alone even after being treated at 37 °C for 7 days. This platform has good potential in the development of VLP-based vaccine products without transportation
Eliciting national and subnational sets of disability weights in mainland China: Findings from the Chinese disability weight measurement study
Summary: Background: The disability weight (DW) quantifies the severity of health states from disease sequela and is a pivotal parameter for disease burden calculation. We conducted a national and subnational DW measurement in China. Methods: In 2020–2021, we conducted a web-based survey to assess DWs for 206 health states in 31 Chinese provinces targeting health workers via professional networks. We fielded questions of paired comparison (PC) and population health equivalence (PHE). The PC data were analysed by probit regression analysis, and the regression results were anchored by results from the PHE responses on the DW scale between 0 (no loss of health) and 1 (health loss equivalent to death). Findings: We used PC responses from 468,541 respondents to estimate DWs of health states. Eight of 11 domains of health had significantly negative coefficients in the regression of the difference between Chinese and Global Burden of Disease (GBD) DWs, suggesting lower DW values for health states with mention of these domains in their lay description. We noted considerable heterogeneity within domains, however. After applying these Chinese DWs to the 2019 GBD estimates for China, total years lived with disability (YLDs) increased by 14·9% to 177 million despite lower estimates for musculoskeletal disorders, cardiovascular diseases, mental disorders, diabetes and chronic kidney disease. The lower estimates of YLDs for these conditions were more than offset by higher estimates of common, low-severity conditions. Interpretation: The differences between the GBD and Chinese DWs suggest that there might be some contextual factors influencing the valuation of health states. While the reduced estimates for mental disorders, alcohol use disorder, and dementia could hint at a culturally different valuation of these conditions in China, the much greater shifts in YLDs from low-severity conditions more likely reflects methodological difficulty to distinguish between health states that vary a little in absolute DW value but a lot in relative terms. Funding: This work was supported by the National Natural Science Foundation of China [grant number 82173626], the National Key Research and Development Program of China [grant numbers 2018YFC1315302], Wuhan Medical Research Program of Joint Fund of Hubei Health Committee [grant number WJ2019H304], and Ningxia Natural Science Foundation Project [grant number 2020AAC03436]
Eliciting national and subnational sets of disability weights in mainland China: Findings from the Chinese disability weight measurement study
Background: The disability weight (DW) quantifies the severity of health states from disease sequela and is a pivotal parameter for disease burden calculation. We conducted a national and subnational DW measurement in China. Methods: In 2020–2021, we conducted a web-based survey to assess DWs for 206 health states in 31 Chinese provinces targeting health workers via professional networks. We fielded questions of paired comparison (PC) and population health equivalence (PHE). The PC data were analysed by probit regression analysis, and the regression results were anchored by results from the PHE responses on the DW scale between 0 (no loss of health) and 1 (health loss equivalent to death). Findings: We used PC responses from 468,541 respondents to estimate DWs of health states. Eight of 11 domains of health had significantly negative coefficients in the regression of the difference between Chinese and Global Burden of Disease (GBD) DWs, suggesting lower DW values for health states with mention of these domains in their lay description. We noted considerable heterogeneity within domains, however. After applying these Chinese DWs to the 2019 GBD estimates for China, total years lived with disability (YLDs) increased by 14·9% to 177 million despite lower estimates for musculoskeletal disorders, cardiovascular diseases, mental disorders, diabetes and chronic kidney disease. The lower estimates of YLDs for these conditions were more than offset by higher estimates of common, low-severity conditions. Interpretation: The differences between the GBD and Chinese DWs suggest that there might be some contextual factors influencing the valuation of health states. While the reduced estimates for mental disorders, alcohol use disorder, and dementia could hint at a culturally different valuation of these conditions in China, the much greater shifts in YLDs from low-severity conditions more likely reflects methodological difficulty to distinguish between health states that vary a little in absolute DW value but a lot in relative terms. Funding: This work was supported by the National Natural Science Foundation of China [grant number 82173626], the National Key Research and Development Program of China [grant numbers 2018YFC1315302], Wuhan Medical Research Program of Joint Fund of Hubei Health Committee [grant number WJ2019H304], and Ningxia Natural Science Foundation Project [grant number 2020AAC03436]