859 research outputs found

    A Deep Network with Visual Text Composition Behavior

    Full text link
    While natural languages are compositional, how state-of-the-art neural models achieve compositionality is still unclear. We propose a deep network, which not only achieves competitive accuracy for text classification, but also exhibits compositional behavior. That is, while creating hierarchical representations of a piece of text, such as a sentence, the lower layers of the network distribute their layer-specific attention weights to individual words. In contrast, the higher layers compose meaningful phrases and clauses, whose lengths increase as the networks get deeper until fully composing the sentence.Comment: accepted to ACL201

    End-to-End Multi-View Networks for Text Classification

    Full text link
    We propose a multi-view network for text classification. Our method automatically creates various views of its input text, each taking the form of soft attention weights that distribute the classifier's focus among a set of base features. For a bag-of-words representation, each view focuses on a different subset of the text's words. Aggregating many such views results in a more discriminative and robust representation. Through a novel architecture that both stacks and concatenates views, we produce a network that emphasizes both depth and width, allowing training to converge quickly. Using our multi-view architecture, we establish new state-of-the-art accuracies on two benchmark tasks.Comment: 6 page

    MixUp as Locally Linear Out-Of-Manifold Regularization

    Full text link
    MixUp is a recently proposed data-augmentation scheme, which linearly interpolates a random pair of training examples and correspondingly the one-hot representations of their labels. Training deep neural networks with such additional data is shown capable of significantly improving the predictive accuracy of the current art. The power of MixUp, however, is primarily established empirically and its working and effectiveness have not been explained in any depth. In this paper, we develop an understanding for MixUp as a form of "out-of-manifold regularization", which imposes certain "local linearity" constraints on the model's input space beyond the data manifold. This analysis enables us to identify a limitation of MixUp, which we call "manifold intrusion". In a nutshell, manifold intrusion in MixUp is a form of under-fitting resulting from conflicts between the synthetic labels of the mixed-up examples and the labels of original training data. Such a phenomenon usually happens when the parameters controlling the generation of mixing policies are not sufficiently fine-tuned on the training data. To address this issue, we propose a novel adaptive version of MixUp, where the mixing policies are automatically learned from the data using an additional network and objective function designed to avoid manifold intrusion. The proposed regularizer, AdaMixUp, is empirically evaluated on several benchmark datasets. Extensive experiments demonstrate that AdaMixUp improves upon MixUp when applied to the current art of deep classification models.Comment: Accepted by AAAI201
    • …
    corecore