7,320 research outputs found

    Phase transitions of the q-state Potts model on multiply-laced Sierpinski gaskets

    Full text link
    We present an exact solution of the q-state Potts model on a class of generalized Sierpinski fractal lattices. The model is shown to possess an ordered phase at low temperatures and a continuous transition to the high temperature disordered phase at any q>=1. Multicriticality is observed in the presence of a symmetry-breaking field. Exact renormalization group analysis yields the phase diagram of the model and a complete set of critical exponents at various transitions.Comment: 6 pages, 6 figures; figures correcte

    Snyder's Model -- de Sitter Special Relativity Duality and de Sitter Gravity

    Get PDF
    Between Snyder's quantized space-time model in de Sitter space of momenta and the \dS special relativity on \dS-spacetime of radius RR with Beltrami coordinates, there is a one-to-one dual correspondence supported by a minimum uncertainty-like argument. Together with Planck length P\ell_P, R(3/Λ)1/2R\simeq (3/\Lambda)^{1/2} should be a fundamental constant. They lead to a dimensionless constant gPR1=(Gc3Λ/3)1/21061g{\sim\ell_PR^{-1}}=(G\hbar c^{-3}\Lambda/3)^{1/2}\sim 10^{-61}. These indicate that physics at these two scales should be dual to each other and there is in-between gravity of local \dS-invariance characterized by gg. A simple model of \dS-gravity with a gauge-like action on umbilical manifolds may show these characters. It can pass the observation tests and support the duality.Comment: 32 page

    Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time

    Full text link
    Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model under the Newton-Hooke contraction of the BdSBdS spacetime with respect to the transformation group, algebra and geometry. It is shown that in Newton-Hooke space-time, there are inertial-type coordinate systems and inertial-type observers, which move along straight lines with uniform velocity. And they are invariant under the Newton-Hooke group. In order to determine uniquely the Newton-Hooke limit, we propose the Galilei-Hooke's relativity principle as well as the postulate on Newton-Hooke universal time. All results are readily extended to the Newton-Hooke model as a contraction of Beltrami-anti-de Sitter spacetime with negative cosmological constant.Comment: 25 pages, 3 figures; some misprints correcte

    What determines pension insurance participation in China?: triangulation and the intertwined relationship among employers, employees and the government

    Get PDF
    The current study draws on the Advocacy Coalition Framework to examine what determines employees’ pension participation in China. For the purpose of exploring which employees actually receive pension coverage and why, econometric analysis was conducted with China’s Employer–Employee Matched Survey data (N = 3412). A variety of both individual factors, ranging from age and Hukou status to job characteristics, and macro factors, including interprovincial migration and level of economic development, are all found to predict insurance coverage. Qualitative research results contextualize these findings by discussing the often ambivalent and triangulated relations among employers, employees and government. These three groups primarily use shared core policy beliefs to structure their interactions in the form of advocacy coalitions. Various types of cross-coalition interaction, including negotiation, cooperation and conflict, are examined. These findings carry both theoretical and policy implications

    Knowledge-driven Meta-learning for CSI Feedback

    Full text link
    Accurate and effective channel state information (CSI) feedback is a key technology for massive multiple-input and multiple-output systems. Recently, deep learning (DL) has been introduced for CSI feedback enhancement through massive collected training data and lengthy training time, which is quite costly and impractical for realistic deployment. In this article, a knowledge-driven meta-learning approach is proposed, where the DL model initialized by the meta model obtained from meta training phase is able to achieve rapid convergence when facing a new scenario during target retraining phase. Specifically, instead of training with massive data collected from various scenarios, the meta task environment is constructed based on the intrinsic knowledge of spatial-frequency characteristics of CSI for meta training. Moreover, the target task dataset is also augmented by exploiting the knowledge of statistical characteristics of wireless channel, so that the DL model can achieve higher performance with small actually collected dataset and short training time. In addition, we provide analyses of rationale for the improvement yielded by the knowledge in both phases. Simulation results demonstrate the superiority of the proposed approach from the perspective of feedback performance and convergence speed.Comment: arXiv admin note: text overlap with arXiv:2301.1347
    corecore