139 research outputs found

    The Relationship between Future Self-Continuity and Mobile Phone Dependence of College Students: Mediating Role of Self-Control

    Get PDF
    The problem of mobile phone dependence is becoming more and more serious. Therefore, it is very important to explore the causes of mobile phone dependence and its psychological mechanism. One of the important characteristics of mobile phone dependence is the loss of control, which shows that self-control is an important factor affecting mobile phone dependence. Self-continuity is closely related to cell phone dependence. Mobile phone addicts usually use mobile phones to temporarily relieve the pressure and negative emotions, but it will lead to more pressure and negative emotions in the future. In order to examine the situation of college students’ future self-continuity, self-control and mobile phone addiction as well as their relationships, especially mediating effect of self-control, a total of 482 college students were assessed with Future Self-Continuity Scale (FSC), Self-Control Scale (SCS), and Mobile Phone Dependency Index (MPAI). The results showed that: (1) The future self-continuity, self-control and mobile phone dependence of the college students in this study were all at a medium level, and there was no significant difference in demographic variables (such as gender, grade, etc.); (2) Both future self-continuity and self-control were negatively correlated with mobile phone dependence; (3) There was a significant positive correlation between future self-continuity and self-control; (4) Self-control played a partial mediating role between future self-continuity and mobile phone dependence. Therefore, improving self-continuity and self-control can be an effective way to intervene mobile phone dependence. In addition research implication, limitations and future directions were discussed

    Liver fatty acid composition in mice with or without nonalcoholic fatty liver disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent causes of abnormal liver function. Because fatty acids can damage biological membranes, fatty acid accumulation in the liver may be partially responsible for the functional and morphological changes that are observed in nonalcoholic liver disease. The aim of this study was to use gas chromatography-mass spectrometry to evaluate the fatty acid composition of an experimental mouse model of NAFLD induced by high-fat feed and CCl<sub>4 </sub>and to assess the association between liver fatty acid accumulation and NAFLD. C57BL/6J mice were given high-fat feed for six consecutive weeks to develop experimental NAFLD. Meanwhile, these mice were given subcutaneous injections of a 40% CCl<sub>4</sub>-vegetable oil mixture twice per week.</p> <p>Results</p> <p>A pathological examination found that NAFLD had developed in the C57BL/6J mice. High-fat feed and CCl<sub>4 </sub>led to significant increases in C14:0, C16:0, C18:0 and C20:3 (P < 0.01), and decreases in C15:0, C18:1, C18:2 and C18:3 (P < 0.01) in the mouse liver. The treatment also led to an increase in SFA and decreases in other fatty acids (UFA, PUFA and MUFA). An increase in the ratio of product/precursor n-6 (C20:4/C18:2) and n-3 ([C20:5+C22:6]/C18:3) and a decrease in the ratio of n-6/n-3 (C20:4/[C20:5+C22:6]) were also observed.</p> <p>Conclusion</p> <p>These data are consistent with the hypothesis that fatty acids are deranged in mice with non-alcoholic fatty liver injury induced by high-fat feed and CCl<sub>4</sub>, which may be involved in its pathogenesis and/or progression via an unclear mechanism.</p

    The cellular distribution of Na+/H+ exchanger regulatory factor 1 is determined by the PDZ-I domain and regulates the malignant progression of breast cancer

    Get PDF
    The oncogenic role of ectopic expression of Na+/H+ exchanger regulatory factor 1 (NHERF1) was recently suggested. Here, we show that NHERF1 was upregulated in high grades compared with low grades. Increased NHERF1 expression was correlated with poor prognosis and poor survival. NHERF1 expression was higher in the nucleus of cancer cells than in contiguous non- mammary epithelial cells. A novel mutation, namely NHERF1 Y24S, was identified in human breast cancer tissues and shown to correspond to a conserved residue in the PDZ-I domain of NHERF1. Truncation and mutation of the PDZ-I domain of NHERF1 increased the nuclear distribution of the NHERF1 protein, and this redistribution was associated with the malignant phenotype of breast cancer cells, including growth, migration, and adhesion. The present results suggest a role for NHERF1 in the progression of breast cancer mediated by the nuclear distribution of the NHERF1 protein, as determined by the truncation or key site mutation of the PDZ-I domain

    Towards on-chip spectroscopy based on a single microresonator

    Get PDF
    Frequency comb generation in the mid-infrared (mid-IR)region is attractive recently. Here, we propose the Ge-on-Si microresonator for power-efficient frequency comb generation in the mid-IR. An octave-spanning comb can be obtained with power reduced to 190 mW. The robustness of the frequency comb generation with localized spectral loss is also analyzed. Based on the analysis, we propose a novel architecture of on-chip spectroscopy systems in the mid-IR

    Designing a novel high-throughput AlphaLISA assay to quantify plasma NHERF1 as a non-small cell lung cancer biomarker

    Get PDF
    NHERF1 might play a significant role in biological processes including oncogenic transformation and metastasis. Owing to the lack of highly sensitive and quantitative methods of NHERF1 in human plasma, there have been few reports on the plasma levels of NHERF1 and its correlation with cancer. Here, a novel amplified luminescent proximity homogeneous immunoassay (AlphaLISA) has been developed and validated for the quantification of NHERF1 in human plasma. This assay was based on an AlphaScreen detection technique with two different anti-NHERF1 antibodies coupled to donor and acceptor beads, respectively. The developed AlphaLISA assay was further optimized and validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision, recovery, selectivity and interferences. The linear range of NHERF1 in human plasma was 5.00–100 ng mL−1, with an LOD of 2.00 ng mL−1. This AlphaLISA assay has been successfully applied to the quantification of NHERF1 in the plasma from 75 patients with non-small cell lung cancer (NSCLC). The levels of NHERF1 protein in plasma from patients with NSCLC were significantly higher than those in the healthy group (p = 0.0004). Based on the evaluation of the ROC curves, measuring the content of NHERF1 in human plasma could provide a potential diagnostic tool for NSCLC

    Association between mobile phone addiction, sleep disorder and the gut microbiota: a short-term prospective observational study

    Get PDF
    Bidirectional communication between the gut microbiota and the brain has sparked interest in exploring the link between mobile phone addiction (MPA) and sleep disorders (SD) in microbiome research. However, investigating the role of gut microbiota in this relationship using animal models presents challenges due to the unique nature of MPA, and human research in this area is scarce. We recruited 99 healthy college students to evaluate the gut microbiome using 16S rRNA gene amplicon sequencing and assess MPA and SD at baseline and after a two-month follow-up. Multiple covariate-adjusted statistical models, including linear regression, permutational multivariate analysis of variance and so on, were employed to determine microbiome associations with MPA at baseline and changes in SD at follow-up. Our findings revealed negative associations between MPA and three alpha diversity metrics, along with alterations in bacterial composition. MPA showed negative associations with the relative abundance of Bacteroidetes, while displaying positive associations with Actinobacteria and Bifidobacteriales. Conversely, Actinobacteria exhibited a negative association with increased SD. This study has established a significant link between MPA and a decrease in the alpha diversity of the gut microbiota. Actinobacteria was associated with MPA and SD, respectively. Additional investigation is needed to fully comprehend the relationship between comorbid behavioral disorders and the gut microbiota
    corecore