6 research outputs found

    DESIGN AND OPTIMIZATION OF THE VARIABLE-DENSITY LATTICE STRUCTURE BASED ON LOAD PATHS

    Get PDF
    Lattice structure is more and more widely used in engineering by replacing solid structure. But its mechanical performances are constrained by the external shape if the unit cells are directly filled in the design domain, and the traditional topology optimization methods are difficult to give the explicitly mechanical guidance for the distribution of internal unit cells. In this paper, a novel design and optimization method of variable-density lattice structure is proposed in order to simultaneously optimize the external shape and the internal unit cells. First of all, the envelope model of any given structure should be established, and the load paths need to be visualized by the theory of load path. Then, the design criteria of external shape are established based on the principle of smoother load paths in the structure. An index of load flow capacity is defined to indicate the load paths density and to control the density distribution of unit cells, and a detailed optimization strategy is given. Finally, three examples of a cantilever plate, an L-shaped bracket and a classical three-point bending beam are used to verify the method. The results show that the models designed by the proposed method have better mechanical performances, lower material usage and less printing time

    The Tabu_Genetic Algorithm: A Novel Method for Hyper-Parameter Optimization of Learning Algorithms

    No full text
    Machine learning algorithms have been widely used to deal with a variety of practical problems such as computer vision and speech processing. But the performance of machine learning algorithms is primarily affected by their hyper-parameters, as without good hyper-parameter values the performance of these algorithms will be very poor. Unfortunately, for complex machine learning models like deep neural networks, it is very difficult to determine their hyper-parameters. Therefore, it is of great significance to develop an efficient algorithm for hyper-parameter automatic optimization. In this paper, a novel hyper-parameter optimization methodology is presented to combine the advantages of a Genetic Algorithm and Tabu Search to achieve the efficient search for hyper-parameters of learning algorithms. This method is defined as the Tabu_Genetic Algorithm. In order to verify the performance of the proposed algorithm, two sets of contrast experiments are conducted. The Tabu_Genetic Algorithm and other four methods are simultaneously used to search for good values of hyper-parameters of deep convolutional neural networks. Experimental results show that, compared to Random Search and Bayesian optimization methods, the proposed Tabu_Genetic Algorithm finds a better model in less time. Whether in a low-dimensional or high-dimensional space, the Tabu_Genetic Algorithm has better search capabilities as an effective method for finding the hyper-parameters of learning algorithms. The presented method in this paper provides a new solution for solving the hyper-parameters optimization problem of complex machine learning models, which will provide machine learning algorithms with better performance when solving practical problems

    A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning

    No full text
    Deep learning has been widely used in different fields such as computer vision and speech processing. The performance of deep learning algorithms is greatly affected by their hyperparameters. For complex machine learning models such as deep neural networks, it is difficult to determine their hyperparameters. In addition, existing hyperparameter optimization algorithms easily converge to a local optimal solution. This paper proposes a method for hyperparameter optimization that combines the Sparrow Search Algorithm and Particle Swarm Optimization, called the Hybrid Sparrow Search Algorithm. This method takes advantages of avoiding the local optimal solution in the Sparrow Search Algorithm and the search efficiency of Particle Swarm Optimization to achieve global optimization. Experiments verified the proposed algorithm in simple and complex networks. The results show that the Hybrid Sparrow Search Algorithm has the strong global search capability to avoid local optimal solutions and satisfactory search efficiency in both low and high-dimensional spaces. The proposed method provides a new solution for hyperparameter optimization problems in deep learning models

    A Hybrid Sparrow Search Algorithm of the Hyperparameter Optimization in Deep Learning

    No full text
    Deep learning has been widely used in different fields such as computer vision and speech processing. The performance of deep learning algorithms is greatly affected by their hyperparameters. For complex machine learning models such as deep neural networks, it is difficult to determine their hyperparameters. In addition, existing hyperparameter optimization algorithms easily converge to a local optimal solution. This paper proposes a method for hyperparameter optimization that combines the Sparrow Search Algorithm and Particle Swarm Optimization, called the Hybrid Sparrow Search Algorithm. This method takes advantages of avoiding the local optimal solution in the Sparrow Search Algorithm and the search efficiency of Particle Swarm Optimization to achieve global optimization. Experiments verified the proposed algorithm in simple and complex networks. The results show that the Hybrid Sparrow Search Algorithm has the strong global search capability to avoid local optimal solutions and satisfactory search efficiency in both low and high-dimensional spaces. The proposed method provides a new solution for hyperparameter optimization problems in deep learning models

    Research on Variable Parameter Drilling Method of Ti-CFRP-Ti Laminated Stacks Based on Real-Time Sensing of Drilling Axial Force

    No full text
    Ti-CFRP-Ti laminated stacks have been widely used in aviation, aerospace, shipbuilding and other industries, owing to its excellent physical and electrochemical properties. However, chip blockages occur easily when drilling into Ti-CFRP-Ti laminated stacks, resulting in a rapid rise of drilling temperature and an increase of axial drilling force, which may lead to the intensification of tool wear and a decline of drilling quality. Cutting force signals can effectively reflect the drilling process and tool condition, however, the traditional plate dynamometer is typically difficult in realizing the follow-up online measurement. Therefore, an intelligent tool holder system for real-time sensing of the cutting force is developed and constructed in this paper, and the variable parameter drilling method of Ti-CFRP-Ti laminated stacks is studied on this basis. Firstly, an intelligent tool holder system with high flexibility and adaptability is designed; Secondly, a cutting force signal processing method based on compressed sensing (CS) theory is proposed to solve the problem of high-frequency signal transmission; Lastly, the drilling experiment of Ti-CFRP-Ti laminated stacks is carried out based on the intelligent tool holder system, and the drilling parameters are optimized using a compromise programming approach and analytic hierarchy process (AHP). The comparison of results show that the optimized drilling parameters can effectively reduce the hole wall surface roughness and improve the drilling efficiency while ensuring a small axial force
    corecore