59,295 research outputs found
Measurement-induced nonlocality over two-sided projective measurements
Measurement-induced nonlocality (MiN), introduced by Luo and Fu [Phys. Rev.
Lett. 106(2011)120401], is a kind of quantum correlation that beyond
entanglement and even beyond quantum discord. Recently, we extended MiN to
infinite-dimensional bipartite system [arXiv:1107.0355]. MiN is defined over
one-sided projective measurements. In this letter we introduce a
measurement-induced nonlocality over two-sided projective measurements. The
nullity of this two-sided MiN is characterized, a formula for calculating
two-sided MiN for pure states is proposed, and a lower bound of (two-sided) MiN
for maximally entangled mixed states is given. In addition, we find that
(two-sided) MiN is not continuous. The two-sided geometric measure of quantum
discord (GMQD) is introduced in [Phys. Lett. A 376(2012)320--324]. We extend it
to infinite-dimensional system and then compare it with the two-sided MiN. Both
finite- and infinite-dimensional cases are considered.Comment: 12 page
Decorrelation of Neutral Vector Variables: Theory and Applications
In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely, serial nonlinear transformation and parallel nonlinear transformation, are proposed to carry out the decorrelation. For a neutral vector variable, which is not multivariate-Gaussian distributed, the conventional principal component analysis cannot yield mutually independent scalar variables. With the two proposed transformations, a highly negatively correlated neutral vector can be transformed to a set of mutually independent scalar variables with the same degrees of freedom. We also evaluate the decorrelation performances for the vectors generated from a single Dirichlet distribution and a mixture of Dirichlet distributions. The mutual independence is verified with the distance correlation measurement. The advantages of the proposed decorrelation strategies are intensively studied and demonstrated with synthesized data and practical application evaluations
Neutrino Masses, Lepton Flavor Mixing and Leptogenesis in the Minimal Seesaw Model
We present a review of neutrino phenomenology in the minimal seesaw model
(MSM), an economical and intriguing extension of the Standard Model with only
two heavy right-handed Majorana neutrinos. Given current neutrino oscillation
data, the MSM can predict the neutrino mass spectrum and constrain the
effective masses of the tritium beta decay and the neutrinoless double-beta
decay. We outline five distinct schemes to parameterize the neutrino
Yukawa-coupling matrix of the MSM. The lepton flavor mixing and baryogenesis
via leptogenesis are investigated in some detail by taking account of possible
texture zeros of the Dirac neutrino mass matrix. We derive an upper bound on
the CP-violating asymmetry in the decay of the lighter right-handed Majorana
neutrino. The effects of the renormalization-group evolution on the neutrino
mixing parameters are analyzed, and the correlation between the CP-violating
phenomena at low and high energies is highlighted. We show that the observed
matter-antimatter asymmetry of the Universe can naturally be interpreted
through the resonant leptogenesis mechanism at the TeV scale. The
lepton-flavor-violating rare decays, such as , are also
discussed in the supersymmetric extension of the MSM.Comment: 50 pages, 22 EPS figures, macro file ws-ijmpe.cls included, accepted
for publication in Int. J. Mod. Phys.
Proper Matter Collineations of Plane Symmetric Spacetimes
We investigate matter collineations of plane symmetric spacetimes when the
energy-momentum tensor is degenerate. There exists three interesting cases
where the group of matter collineations is finite-dimensional. The matter
collineations in these cases are either four, six or ten in which four are
isometries and the rest are proper.Comment: 10 pages, LaTex, accepted for publication in Modern Physics Letters
A sharp stability criterion for the Vlasov-Maxwell system
We consider the linear stability problem for a 3D cylindrically symmetric
equilibrium of the relativistic Vlasov-Maxwell system that describes a
collisionless plasma. For an equilibrium whose distribution function decreases
monotonically with the particle energy, we obtained a linear stability
criterion in our previous paper. Here we prove that this criterion is sharp;
that is, there would otherwise be an exponentially growing solution to the
linearized system. Therefore for the class of symmetric Vlasov-Maxwell
equilibria, we establish an energy principle for linear stability. We also
treat the considerably simpler periodic 1.5D case. The new formulation
introduced here is applicable as well to the nonrelativistic case, to other
symmetries, and to general equilibria
Vacuum Energy Density and Cosmological Constant in dS Brane World
We discuss the vacuum energy density and the cosmological constant of dS
brane world with a dilaton field. It is shown that a stable AdS brane can
be constructed and gravity localization can be realized. An explicit relation
between the dS bulk cosmological constant and the brane cosmological constant
is obtained. The discrete mass spectrum of the massive scalar field in the
AdS brane is used to acquire the relationship between the brane
cosmological constant and the vacuum energy density. The vacuum energy density
in the brane gotten by this method is in agreement with astronomical
observations.Comment: 16 pages,4 figure
Strain driven anisotropic magnetoresistance in antiferromagnetic LaSrMnO
We investigate the effects of strain on antiferromagntic (AFM) single crystal
thin films of LaSrMnO (x = 0.6). Nominally unstrained
samples have strong magnetoresistance with anisotropic magnetoresistances (AMR)
of up to 8%. Compressive strain suppresses magnetoresistance but generates AMR
values of up to 63%. Tensile strain presents the only case of a metal-insulator
transition and demonstrates a previously unreported AMR behavior. In all three
cases, we find evidence of magnetic ordering and no indication of a global
ferromagnetic phase transition. These behaviors are attributed to epitaxy
induced changes in orbital occupation driving different magnetic ordering
types. Our findings suggest that different AFM ordering types have a profound
impact on the AMR magnitude and character.Comment: http://dx.doi.org/10.1063/1.489242
Weblog patterns and human dynamics with decreasing interest
Weblog is the fourth way of network exchange after Email, BBS and MSN. Most
bloggers begin to write blogs with great interest, and then their interests
gradually achieve a balance with the passage of time. In order to describe the
phenomenon that people's interest in something gradually decreases until it
reaches a balance, we first propose the model that describes the attenuation of
interest and reflects the fact that people's interest becomes more stable after
a long time. We give a rigorous analysis on this model by non-homogeneous
Poisson processes. Our analysis indicates that the interval distribution of
arrival-time is a mixed distribution with exponential and power-law feature,
that is, it is a power law with an exponential cutoff. Second, we collect blogs
in ScienceNet.cn and carry on empirical studies on the interarrival time
distribution. The empirical results agree well with the analytical result,
obeying a special power law with the exponential cutoff, that is, a special
kind of Gamma distribution. These empirical results verify the model, providing
an evidence for a new class of phenomena in human dynamics. In human dynamics
there are other distributions, besides power-law distributions. These findings
demonstrate the variety of human behavior dynamics.Comment: 8 pages, 1 figure
Synthesis and crystal growth of Cs0.8(FeSe0.98)2: a new iron-based superconductor with Tc=27K
We report on the synthesis of large single crystals of a new FeSe-layer
superconductor Cs0.8(FeSe0.98)2. X-ray powder diffraction, neutron
powder-diffraction and magnetization measurements have been used to compare the
crystal structure and the magnetic properties of Cs0.8(FeSe0.98)2 with those of
the recently discovered potassium intercalated system KxFe2Se2. The new
compound Cs0.8(FeSe0.98)2 shows a slightly lower superconducting transition
temperature (Tc=27.4 K) in comparison to 29.5 in K0.8(FeSe0.98)2). The volume
of the crystal unit cell increases by replacing K by Cs - the c-parameter grows
from 14.1353(13) {\AA} to 15.2846(11) {\AA}. For the so far known alkali metal
intercalated layered compounds (K0.8Fe2Se2 and Cs0.8(FeSe0.98)2) the Tc
dependence on the anion height (distance between Fe-layers and Se-layers) was
found to be analogous to those reported for As-containing Fe-superconductors
and Fe(Se1-xChx), where Ch=Te, S.Comment: 8 pages, 4 figure
Multiple Superconducting Gaps, Anisotropic Spin Fluctuations and Spin-Orbit Coupling in Iron-Pnictides
This article reviews the NMR and NQR studies on iron-based high-temperature
superconductors by the IOP/Okayama group. It was found that the electron pairs
in the superconducting state are in the spin-singlet state with multiple
fully-opened energy gaps. The antiferromagnetic spin fluctuations in the normal
state are found to be closely correlated with the superconductivity. Also the
antiferromagnetic spin fluctuations are anisotropic in the spin space, which is
different from the case in copper oxide superconductors. This anisotropy
originates from the spin-orbit coupling and is an important reflection of the
multiple-bands nature of this new class of superconductors.Comment: 20 pages, 16 figure
- …
