11 research outputs found

    How the Direction of Screws Affects the Primary Stability of a Posterior Malleolus Osteosynthesis under Torsional Loading: A Biomechanical Study

    Get PDF
    Insufficient fixation of a posterior malleolus fracture (PM) can lead to posttraumatic complications such as osteoarthritis and chronic pain. The purpose of this biomechanical study was to test the hypothesis of whether the direction of PM screw fixation has an impact on the primary stability of osteosynthesis of a PM under torsional loading. PM fractures of 7 pairs human cadaveric lower leg specimens were stabilized with posterior to anterior (p.a.) or anterior to posterior (a.p.) screw fixation. Stability of the osteosynthesis was biomechanically tested using cyclic external torsional loading levels, in 2 Nm steps from 2 Nm up to 12 Nm, under constant monitoring with 3D ultrasonic marker (Zebris). The primary stability does not differ between both stabilizations ( p = 0.378) with a medium effect size (η 2 p = 0.065). The movement of the PM tends to be marginally greater for the osteosynthesis with a.p. screws than with p.a. screws. Whether a.p. screws or the alternative p.a. screw fixation is performed does not seem to have an influence on the primary stability of the osteosynthesis of the PM fixation under torsional loading. Although osteosynthesis from posterior seems to be more stable, the biomechanical results in the torsional test show quite equivalent stabilities. If there is no significant dislocation of the PM, a.p. screw fixation could be a minimally invasive but stable surgical strategy

    Secure corridor for infraacetabular screws in acetabular fracture fixation—a 3-D radiomorphometric analysis of 124 pelvic CT datasets

    No full text
    Abstract Background Acetabular fracture surgery is directed toward anatomical reduction and stable fixation to allow for the early functional rehabilitation of an injured hip joint. Recent biomechanical investigations have shown the superiority of using an additional screw in the infraacetabular (IA) region, thereby transfixing the separated columns to strengthen the construct by closing the periacetabular fixation frame. However, the inter-individual existence and variance concerning secure IA screw corridors are poorly understood. Methods This computer-aided 3-D radiomorphometric study examined 124 CT Digital Imaging and Communications in Medicine (DICOM) datasets of intact human pelves (248 acetabula) to visualize the spatial IA corridors as the sum of all intraosseous screw positions. DICOM files were pre-processed using the Amira® 4.2 visualization software. Final corridor computation was accomplished using a custom-made software algorithm. The volumetric measurement data of each corridor were calculated for further statistical analyses. Correlations between the volumetric values and the biometric data were investigated. Furthermore, the influence of hip dysplasia on the IA corridor configuration was analyzed. Results The IA corridors consistently showed a double-cone shape with the isthmus located at the acetabular fovea. In 97% of male and 91% of female acetabula, a corridor for a 3.5-mm screw could be found. The number of IA corridors was significantly lower in females for screw diameters ≥ 4.5 mm. The mean 3.5-mm screw corridor volume was 16 cm3 in males and 9.2 cm3 in female pelves. Corridor volumes were significantly positively correlated with body height and weight and with the diameter of Köhler’s teardrop on standard AP pelvic X-rays. No correlation was observed between hip dysplasia and the IA corridor extent. Conclusion IA corridors are consistently smaller in females. However, 3.5-mm small fragment screws may still be used as the standard implant because sex-specific differences are significant only with screw diameters ≥ 4.5 mm. Congenital hip dysplasia does not affect secure IA screw insertion. The described method allows 3-D shape analyses with highly reliable results. The visualization of secure IA corridors may support the spatial awareness of surgeons. Volumetric data allow the reliable assessment of individual IA corridors using standard AP X-ray views, which aids preoperative planning

    Impact of Spino-Pelvic Parameters on the Prediction of Lumbar and Thoraco-Lumbar Segment Angles in the Supine Position

    No full text
    Background: The correction of malposition according to vertebral fractures is difficult because the alignment at the time before the fracture is unclear. Therefore, we investigate whether the spinal alignment can be determined by the spino-pelvic parameters. Methods: Pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), adjacent endplate angles (EPA), age, sex, body weight, body size, BMI, and age were used to predict mono- and bisegmental EPA (mEPA, bEPA) in the supine position using linear regression models. This study was approved by the Ethics Committee of the Medical Association of Saxony-Anhalt Germany on 20 August 2020, under number 46/20. Results: Using data from 287 patients, the prediction showed R2 from 0.092 up to 0.972. The adjacent cranial and caudal EPA showed by far the most frequently significance in the prediction of all parameters used. Anthropometric and spino-pelvic parameters showed sparse impact, which was frequently in the lower lumbar regions. On average, a very good prediction was found. For two mEPA (L3/4 R2 = 0.914, L4/5 R2 = 0.953) and two bEPA (L3 R2 = 0.899, L4 R2 = 0.972), the R2 was >0.8. However, the predicted EPA differed for individual patients, even in these very effective prediction models—roughly around ±10° as compared to the measured EPA. Conclusions: In general, the prediction showed good to perfect results. In the supine position, the spinopelvic and anthropometric parameters show sparse impact on the prediction of mEPA or bEPA

    Is there a correlation between biophotonical, biochemical, histological, and visual changes in thecartilage of osteoarthritic knee-joints?

    Get PDF
    The aim of this study was to detect characteristic structural changes in the cartilage composition of osteoarthritis (OA), hereby improving the arthroscopic identification of cartilage pathology by the use of a non-destructive technique - NIRS (Near-Infrared Spectroscopy). 682 cartilage samples out of 25 knees with OA were classified visually, using the ICRS system, biophotonically, histologically (n = 66), using the Score of Mankin and the Score of Otte, and biochemically (n = 616), determining the content of glycosaminoglycan (GAG) and hydroxyproline (HP). Significant correlations were found between biophotonical, histological, biochemical and visual characteristics of cartilage lesions. NIRS values corresponded to the content of GAG, HP and to the Score of Mankin and Otte. The data show that changes in the composition and structure of articular cartilage influence the optical properties and can be measured objectively by NIRS. The ease of use during arthroscopy, the quick response and the non-destructive nature of NIRS make it a promising addition to the assessment of disease intervention in O

    Fibula Nail versus Locking Plate Fixation—A Biomechanical Study

    Get PDF
    In the treatment of ankle fractures, complications such as wound healing problems following open reduction and internal fixation are a major problem. An innovative alternative to this procedure offers a more minimally invasive nail stabilization. The purpose of this biomechanical study was to clarify whether this method was biomechanically comparable to the established method. First, the stability (range of motion, diastasis) and rotational stiffness of the native upper ankle were evaluated in eight pairs of native geriatric specimens. Subsequently, an unstable ankle fracture was created and fixed with a locking plate or a nail in a pairwise manner. The ankles showed significantly less stability and rotational stiffness properties after nail and plate fixations than the corresponding native ankles (p p = 0.694) and diastasis (p = 0.166). The nail also presented significantly greater rotational stiffness compared to the plate (p = 0.001). However, both fixations remained behind the native stability and rotational stiffness. Due to the comparable biomechanical properties of the nail and plate fixations, an early weight-bearing following nail fixation should be assessed on a case-by-case basis considering the severity of fractures
    corecore