2,366 research outputs found
Nonlocal density functionals and the linear response of the homogeneous electron gas
The known and usable truly nonlocal functionals for exchange-correlation
energy of the inhomogeneous electron gas are the ADA (average density
approximation) and the WDA (weighted density approximation). ADA, by design,
yields the correct linear response function of the uniform electron gas. WDA is
constructed so that it is exact in the limit of one-electron systems. We derive
an expression for the linear response of the uniform gas in the WDA, and
calculate it for several flavors of WDA. We then compare the results with the
Monte-Carlo data on the exchange-correlation local field correction, and
identify the weak points of conventional WDA in the homogeneous limit. We
suggest how the WDA can be modified to improve the response function. The
resulting approximation is a good one in both opposite limits, and should be
useful for practical nonlocal density functional calculations.Comment: 4 pages, two eps figures embedde
Metal-insulator transitions: Influence of lattice structure, Jahn-Teller effect, and Hund's rule coupling
We study the influence of the lattice structure, the Jahn-Teller effect and
the Hund's rule coupling on a metal-insulator transition in AnC60 (A= K, Rb).
The difference in lattice structure favors A3C60 (fcc) being a metal and A4C60
(bct) being an insulator, and the coupling to Hg Jahn-Teller phonons favors
A4C60 being nonmagnetic. The coupling to Hg (Ag) phonons decreases (increases)
the value Uc of the Coulomb integral at which the metal-insulator transition
occurs. There is an important partial cancellation between the Jahn-Teller
effect and the Hund's rule coupling.Comment: 4 pages, RevTeX, 3 eps figure, additional material available at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene
Universal Quantum Degeneracy Point for Superconducting Qubits
The quantum degeneracy point approach [D. Vion et al., Science 296, 886
(2002)] effectively protects superconducting qubits from low-frequency noise
that couples with the qubits as transverse noise. However, low-frequency noise
in superconducting qubits can originate from various mechanisms and can couple
with the qubits either as transverse or as longitudinal noise. Here, we present
a quantum circuit containing a universal quantum degeneracy point that protects
an encoded qubit from arbitrary low-frequency noise. We further show that
universal quantum logic gates can be performed on the encoded qubit with high
gate fidelity. The proposed scheme is robust against small parameter spreads
due to fabrication errors in the superconducting qubits.Comment: 7 pages, 4 figure
Screening, Coulomb pseudopotential, and superconductivity in alkali-doped Fullerenes
We study the static screening in a Hubbard-like model using quantum Monte
Carlo. We find that the random phase approximation is surprisingly accurate
almost up to the Mott transition. We argue that in alkali-doped Fullerenes the
Coulomb pseudopotential is not very much reduced by retardation
effects. Therefore efficient screening is important in reducing
sufficiently to allow for an electron-phonon driven superconductivity. In this
way the Fullerides differ from the conventional picture, where retardation
effects play a major role in reducing the electron-electron repulsion.Comment: 4 pages RevTeX with 2 eps figures, additional material available at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene
The healing mechanism for excited molecules near metallic surfaces
Radiation damage prevents the ability to obtain images from individual
molecules. We suggest that this problem can be avoided for organic molecules by
placing them in close proximity with a metallic surface. The molecules will
then quickly dissipate any electronic excitation via their coupling to the
metal surface. They may therefore be observed for a number of elastic
scattering events that is sufficient to determine their structure.Comment: 4 pages, 4 figures. Added reference
Ex-situ Tunnel Junction Process Technique Characterized by Coulomb Blockade Thermometry
We investigate a wafer scale tunnel junction fabrication method, where a
plasma etched via through a dielectric layer covering bottom Al electrode
defines the tunnel junction area. The ex-situ tunnel barrier is formed by
oxidation of the bottom electrode in the junction area. Room temperature
resistance mapping over a 150 mm wafer give local deviation values of the
tunnel junction resistance that fall below 7.5 % with an average of 1.3 %. The
deviation is further investigated by sub-1 K measurements of a device, which
has one tunnel junction connected to four arrays consisting of N junctions (N =
41, junction diameter 700 nm). The differential conductance is measured in
single-junction and array Coulomb blockade thermometer operation modes. By
fitting the experimental data to the theoretical models we found an upper limit
for the local tunnel junction resistance deviation of ~5 % for the array of
2N+1 junctions. This value is of the same order as the minimum detectable
deviation defined by the accuracy of our experimental setup
Pauli susceptibility of A3C60 (A=K, Rb)
The Pauli paramagnetic susceptibility of A3C60 (A= K, Rb) compounds is
calculated. A lattice quantum Monte Carlo method is applied to a multi-band
Hubbard model, including the on-site Coulomb interaction U. It is found that
the many-body enhancement of the susceptibility is of the order of a factor of
three. This reconciles estimates of the density of states from the
susceptibility with other estimates. The enhancement is an example of a
substantial many-body effect in the doped fullerenes.Comment: 4 pages, revtex, 2 figures, submitted to Phys. Rev. B more
information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene
The transition from the adiabatic to the sudden limit in core level photoemission: A model study of a localized system
We consider core electron photoemission in a localized system, where there is
a charge transfer excitation. The system is modelled by three electron levels,
one core level and two outer levels. The model has a Coulomb interaction
between these levels and the continuum states into which the core electron is
emitted. The model is simple enough to allow an exact numerical solution, and
with a separable potential an analytic solution. We calculate the ratio
r(omega) between the weights of the satellite and the main peak as a function
of the photon energy omega. The transition from the adiabatic to the sudden
limit takes place for quite small photoelectron kinetic energies. For such
small energies, the variation of the dipole matrix element is substantial and
described by the energy scale Ed. Without the coupling to the photoelectron,
the corresponding ratio r0(omega) is determined by Ed and the satellite
excitation energy dE. When the interaction potential with the continuum states
is introduced, a new energy scale Es=1/(2Rs^2) enters, where Rs is a length
scale of the interaction potential. At threshold there is typically a (weak)
constructive interference between intrinsic and extrinsic contributions, and
the ratio r(omega)/r0(omega) is larger than its limiting value for large omega.
The interference becomes small or weakly destructive for photoelectron energies
of the order Es. For larger energies r(omega)/r0(omega) therefore typically has
a weak undershoot. If this undershoot is neglected, r(omega)/r0(omega) reaches
its limiting value on the energy scale Es.Comment: 18 pages, latex2e, 13 eps figure
- …