19 research outputs found

    Association of limbic system-associated membrane protein (LSAMP) to male completed suicide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroimaging studies have demonstrated volumetric abnormalities in limbic structures of suicide victims. The morphological changes might be caused by some inherited neurodevelopmental defect, such as failure to form proper axonal connections due to genetically determined dysfunction of neurite guidance molecules. Limbic system-associated membrane protein (LSAMP) is a neuronal adhesive molecule, preferentially expressed in developing limbic system neuronal dendrites and somata. Some evidence for the association between LSAMP gene and behavior has come from both animal as well as human studies but further investigation is required. In current study, polymorphic loci in human LSAMP gene were examined in order to reveal any associations between genetic variation in <it>LSAMP </it>and suicidal behaviour.</p> <p>Methods</p> <p>DNA was obtained from 288 male suicide victims and 327 healthy male volunteers. Thirty SNPs from LSAMP gene and adjacent region were selected by Tagger algorithm implemented in Haploview 3.32. Genotyping was performed using the SNPlex™ (Applied Biosystems) platform. Data was analyzed by Genemapper 3.7, Haploview 3.32 and SPSS 13.0.</p> <p>Results</p> <p>Chi square test revealed four allelic variants (rs2918215, rs2918213, rs9874470 and rs4821129) located in the intronic region of the gene to be associated with suicide, major alleles being overrepresented in suicide group. However, the associations did not survive multiple correction test. Defining the haplotype blocks using confidence interval algorithm implemented in Haploview 3.32, we failed to detect any associated haplotypes.</p> <p>Conclusion</p> <p>Despite a considerable amount of investigation on the nature of suicidal behaviour, its aetiology and pathogenesis remain unknown. This study examined the variability in LSAMP gene in relation to completed suicide. Our results indicate that LSAMP might play a role in pathoaetiology of suicidal behaviour but further studies are needed to understand its exact contribution.</p

    Genetic Variation of Superoxide Dismutases in Patients with Primary Open-angle Glaucoma

    No full text
    Abstract Purpose: Oxidative stress has been described as an underlying pathogenetic mechanism in retinal ganglion cell apoptosis, which is a hallmark of primary open-angle glaucoma (POAG). Superoxide dismutases (SODs) are enzymes involved in the protection against oxidative stress by detoxification of superoxide. In this study, we investigated a number of disease-associated single nucleotide polymorphisms (SNPs) in the copper-zinc-containing SOD1 and SOD3, and in the manganese superoxide dismutase SOD2, in POAG patients. Methods: The study included 239 patients with POAG and 185 controls, all of Estonian origin, recruited at two ophthalmic clinics in Tartu, Estonia. Eleven SNPs, either functional, disease-associated or tag SNPs in SOD1, SOD2 and SOD3 were genotyped using TaqMan Allelic Discrimination. Haplotype analysis was performed on the SNPs in SOD2. Results: Using binary logistic regression in an additive model, the rs2842980 SNP in SOD2 was significantly associated with POAG diagnosis (p = 0.03) at a univariate level. None of the studied SNPs showed an association with risk of POAG in a multivariate analysis, including age and current smoking as covariates. Analysis of SOD2 haplotypes did not show any association with risk of POAG. Conclusions: If oxidative stress is an important mechanism in POAG-related retinal ganglion cell death, genetic variations in SOD1, SOD2 and SOD3 are not major contributors in the pathogenesis

    Genetic Variation of Superoxide Dismutases in Patients with Primary Open-angle Glaucoma

    No full text
    Abstract Purpose: Oxidative stress has been described as an underlying pathogenetic mechanism in retinal ganglion cell apoptosis, which is a hallmark of primary open-angle glaucoma (POAG). Superoxide dismutases (SODs) are enzymes involved in the protection against oxidative stress by detoxification of superoxide. In this study, we investigated a number of disease-associated single nucleotide polymorphisms (SNPs) in the copper-zinc-containing SOD1 and SOD3, and in the manganese superoxide dismutase SOD2, in POAG patients. Methods: The study included 239 patients with POAG and 185 controls, all of Estonian origin, recruited at two ophthalmic clinics in Tartu, Estonia. Eleven SNPs, either functional, disease-associated or tag SNPs in SOD1, SOD2 and SOD3 were genotyped using TaqMan Allelic Discrimination. Haplotype analysis was performed on the SNPs in SOD2. Results: Using binary logistic regression in an additive model, the rs2842980 SNP in SOD2 was significantly associated with POAG diagnosis (p = 0.03) at a univariate level. None of the studied SNPs showed an association with risk of POAG in a multivariate analysis, including age and current smoking as covariates. Analysis of SOD2 haplotypes did not show any association with risk of POAG. Conclusions: If oxidative stress is an important mechanism in POAG-related retinal ganglion cell death, genetic variations in SOD1, SOD2 and SOD3 are not major contributors in the pathogenesis

    Superoxide dismutase gene polymorphisms in patients with age-related cataract

    No full text
    BACKGROUND: Functional polymorphisms in genes encoding antioxidant enzymes may result in reduced enzyme activity and increased levels of reactive oxygen species, such as superoxide radicals, which in turn may contribute to increased risk of age-related disorders. Copper-zinc superoxide dismutases, SOD-1 and SOD-3, and manganese superoxide dismutase, SOD-2, are enzymes involved in the protection against oxidative stress and detoxification of superoxide. In this study, we investigated a number of disease-associated single nucleotide polymorphisms (SNPs) of SOD1, SOD2 and SOD3, in patients with age-related cataract. MATERIALS AND METHODS: The study included an Estonian sample of 492 patients with age-related cataract, subgrouped into nuclear, cortical, posterior subcapsular and mixed cataract, and 185 controls. Twelve SNPs in SOD1, SOD2 and SOD3 were genotyped using TaqMan Allelic Discrimination. Haplotype analysis was performed on the SNPs in SOD2. RESULTS: None of the studied SNPs showed an association with risk of cataract. These results were consistent after adding known risk factors (age, sex and smoking) as covariates in the multivariate analyses and after stratification by cataract subtype. Analysis of SOD2 haplotypes did not show any associations with risk of cataract. CONCLUSIONS: If genetic variation in genes encoding SOD-1, SOD-2 and SOD-3 contributes to cataract formation, there is no major contribution of the SNPs analyzed in the present study
    corecore