271 research outputs found

    Computing Fractional Flow Reserve From Invasive Coronary Angiography Getting Closer

    Get PDF

    Virtual Coronary Intervention: A Treatment Planning Tool Based Upon the Angiogram

    Get PDF
    Objectives: This study sought to assess the ability of a novel virtual coronary intervention (VCI) tool based on invasive angiography to predict the patient's physiological response to stenting. Background: Fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) is associated with improved clinical and economic outcomes compared with angiographic guidance alone. Virtual (v)FFR can be calculated based upon a 3-dimensional (3D) reconstruction of the coronary anatomy from the angiogram, using computational fluid dynamics (CFD) modeling. This technology can be used to perform virtual stenting, with a predicted post-PCI FFR, and the prospect of optimized treatment planning. Methods: Patients undergoing elective PCI had pressure-wire-based FFR measurements pre- and post-PCI. A 3D reconstruction of the diseased artery was generated from the angiogram and imported into the VIRTUheart workflow, without the need for any invasive physiological measurements. VCI was performed using a radius correction tool replicating the dimensions of the stent deployed during PCI. Virtual FFR (vFFR) was calculated pre- and post-VCI, using CFD analysis. vFFR pre- and post-VCI were compared with measured (m)FFR pre- and post-PCI, respectively. Results: Fifty-four patients and 59 vessels underwent PCI. The mFFR and vFFR pre-PCI were 0.66 ± 0.14 and 0.68 ± 0.13, respectively. Pre-PCI vFFR deviated from mFFR by ±0.05 (mean Δ = -0.02; SD = 0.07). The mean mFFR and vFFR post-PCI/VCI were 0.90 ± 0.05 and 0.92 ± 0.05, respectively. Post-VCI vFFR deviated from post-PCI mFFR by ±0.02 (mean Δ = -0.01; SD = 0.03). Mean CFD processing time was 95 s per case. Conclusions: The authors have developed a novel VCI tool, based upon the angiogram, that predicts the physiological response to stenting with a high degree of accuracy

    When is rotational angiography superior to conventional single-plane angiography for planning coronary angioplasty?

    Get PDF
    Objectives: To investigate the value of rotational coronary angiography (RoCA) in the context of percutaneous coronary intervention (PCI) planning. Background: As a diagnostic tool, RoCA is associated with decreased patient irradiation and contrast use compared with conventional coronary angiography (CA) and provides superior appreciation of three-dimensional anatomy. However, its value in PCI remains unknown. Methods: We studied stable coronary artery disease assessment and PCI planning by interventional cardiologists. Patients underwent either RoCA or conventional CA pre-PCI for planning. These were compared with the referral CA (all conventional) in terms of quantitative lesion assessment and operator confidence. An independent panel reanalyzed all parameters. Results: Six operators performed 127 procedures (60 RoCA, 60 conventional CA, and 7 crossed-over) and assessed 212 lesions. RoCA was associated with a reduction in the number of lesions judged to involve a bifurcation (23 vs. 30 lesions, P < 0.05) and a reduction in the assessment of vessel caliber (2.8 vs. 3.0 mm, P < 0.05). RoCA improved confidence assessing lesion length (P = 0.01), percentage stenosis (P = 0.02), tortuosity (P < 0.04), and proximity to a bifurcation (P = 0.03), particularly in left coronary artery cases. X-ray dose, contrast agent volume, and procedure duration were not significantly different. Conclusions: Compared with conventional CA, RoCA augments quantitative lesion assessment, enhances confidence in the assessment of coronary artery disease and the precise details of the proposed procedure, but does not affect X-ray dose, contrast agent volume, or procedure duration. © 2015 Wiley Periodicals, Inc

    The double-kissing nano-crush for bifurcation lesions : development, bioengineering, fluid dynamics and initial clinical testing

    Get PDF
    Background When possible, a single stent technique to treat coronary bifurcation disease is preferable. However, when two stents are required, there is scope to improve upon existing techniques. The crush technique has already been improved with the introduction of double kissing (DK) and mini-crush. We sought to refine and simplify the mini-crush technique, retaining its advantages whilst avoiding its disadvantages, by developing a DK nano-crush technique. Methods The DK nano-crush method allows complete lesion coverage of a bifurcation lesion without excessive metal layers. This is achieved by positioning the SB stent with minimal protrusion into the main branch (MB), implantation of the SB stent with an undeployed balloon in the MB, immediate kissing balloon inflation with formation of a minimal neocarina, stenting the MB, re-crossing the proximal part of the SB without crossing double metal layer, and final kissing. We demonstrate this technique with benchtop implantation, micro computed tomography reconstruction, computational fluid dynamics (CFD) modelling and clinically with angiographic and intravascular imaging. Results The DK nano-crush was practically feasible and resulted in full ostial coverage. CFD analysis demonstrated minimally disturbed blood flow. The technique was successfully utilised in nine patients with bifurcation lesions with excellent angiographic outcomes and no adverse events over twelve months. Conclusions The DK nano-crush technique may represent the ultimate refinement of the original ‘crush’ with a number of practical and theoretical advantages. It remains to be tested against other bifurcation techniques in prospective trials

    Environment and Rural Affairs Monitoring & Modelling Programme - ERAMMP Technical Annex 1: Soil nutrient management for improved land. Sustainable Farming Scheme. Evidence Review.

    Get PDF
    The Brief: Establish intervention logic for Soil Nutrient Management (SNM) plans across all improved agricultural land. Establish the environmental benefits including GHG emissions reduction, biodiversity, water quality and air quality which will be secured through the universal uptake of SNM plans. Identify the contribution that better SNM will make to the economic resilience and sustainability of Welsh agriculture

    Prolonged enoxaparin therapy compared with standard-of-care antithrombotic therapy in opiate-treated patients undergoing primary percutaneous coronary intervention

    Get PDF
    A novel enoxaparin regimen consisting of intra-arterial bolus (0.75 mg/kg) followed by intravenous infusion (0.75 mg/kg/6 hours) has been developed as a possible solution to the delayed absorption of oral P2Y12 inhibitors in opiate-treated ST-elevation myocardial infarction (STEMI) patients undergoing primary angioplasty. We aimed to study the feasibility of this regimen as an alternative to standard-of-care treatment (SOC) with unfractionated heparin ± glycoprotein IIb/IIIa antagonist (GPI). One hundred opiate-treated patients presenting with STEMI and accepted for primary angioplasty were randomized (1:1) to either enoxaparin or SOC. Fifty patients were allocated enoxaparin (median age 61, 40% females) and 49 allocated SOC (median age 62, 22% females). One developed stroke before angiography and was withdrawn. One SOC patient had a gastrointestinal bleed resulting in 1 g drop in hemoglobin and early cessation of GPI infusion. Two enoxaparin patients had transient minor bleeding: one transient gingival bleed and one episode of coffee ground vomit with no hemoglobin drop or hemodynamic instability. Two SOC and no enoxaparin group patients had acute stent thrombosis. These preliminary data support further study of this novel 6-hour enoxaparin regimen in opiate-treated PPCI patients

    Incorporating clinical parameters to improve the accuracy of angiography-derived computed fractional flow reserve

    Get PDF
    Aims Angiography-derived fractional flow reserve (angio-FFR) permits physiological lesion assessment without the need for an invasive pressure wire or induction of hyperaemia. However, accuracy is limited by assumptions made when defining the distal boundary, namely coronary microvascular resistance (CMVR). We sought to determine whether machine learning (ML) techniques could provide a patient-specific estimate of CMVR and therefore improve the accuracy of angio-FFR. Methods and results Patients with chronic coronary syndromes underwent coronary angiography with FFR assessment. Vessel-specific CMVR was computed using a three-dimensional computational fluid dynamics simulation with invasively measured proximal and distal pressures applied as boundary conditions. Predictive models were created using non-linear autoregressive moving average with exogenous input (NARMAX) modelling with computed CMVR as the dependent variable. Angio-FFR (VIRTUheart™) was computed using previously described methods. Three simulations were run: using a generic CMVR value (Model A); using ML-predicted CMVR based upon simple clinical data (Model B); and using ML-predicted CMVR also incorporating echocardiographic data (Model C). The diagnostic (FFR ≤ or >0.80) and absolute accuracies of these models were compared. Eighty-four patients underwent coronary angiography with FFR assessment in 157 vessels. The mean measured FFR was 0.79 (±0.15). The diagnostic and absolute accuracies of each personalized model were: (A) 73% and ±0.10; (B) 81% and ±0.07; and (C) 89% and ±0.05, P < 0.001. Conclusion The accuracy of angio-FFR was dependent in part upon CMVR estimation. Personalization of CMVR from standard clinical data resulted in a significant reduction in angio-FFR error

    The relationship between coronary stenosis morphology and fractional flow reserve: a computational fluid dynamics modelling study

    Get PDF
    Aims: International guidelines mandate the use of fractional flow reserve (FFR) and/or non-hyperaemic pressure ratios to assess the physiological significance of moderate coronary artery lesions to guide revascularization decisions. However, they remain underused such that visual estimation of lesion severity continues to be the predominant decision-making tool. It would be pragmatic to have an improved understanding of the relationship between lesion morphology and haemodynamics. The aim of this study was to compute virtual FFR (vFFR) in idealized coronary artery geometries with a variety of stenosis and vessel characteristics. Methods and results: Coronary artery geometries were modelled, based upon physiologically realistic branched arteries. Common stenosis characteristics were studied, including % narrowing, length, eccentricity, shape, number, position relative to branch, and distal (myocardial) resistance. Computational fluid dynamics modelling was used to calculate vFFRs using the VIRTUheart™ system. Percentage lesion severity had the greatest effect upon FFR. Any ≥80% diameter stenosis in two views (i.e. concentric) was physiologically significant (FFR ≤ 0.80), irrespective of length, shape, or vessel diameter. Almost all eccentric stenoses and all 50% concentric stenoses were physiologically non-significant, whilst 70% uniform concentric stenoses about 10 mm long straddled the ischaemic threshold (FFR 0.80). A low microvascular resistance (MVR) reduced FFR on average by 0.05, and a high MVR increased it by 0.03. Conclusion: Using computational modelling, we have produced an analysis of vFFR that relates stenosis characteristics to haemodynamic significance. The strongest predictor of a positive vFFR was a concentric, ≥80% diameter stenosis. The importance of MVR was quantified. Other lesion characteristics have a limited impact
    • …
    corecore