8,216 research outputs found
Late-successional and old-growth forests in the northeastern United States: Structure, dynamics, and prospects for restoration.
Abstract
Restoration of old-growth forest structure is an emerging silvicultural goal, especially in those regions where old-growth abundance falls below the historic range of variability. However, longitudinal studies of old-growth dynamics that can inform silvicultural and policy options are few. We analyzed the change in structure, including stand density, diameter distribution, and the abundance of large live, standing dead, and downed dead trees on 58 late-successional and old-growth plots in Maine, USA, and compared these to regional data from the U.S. Forest Inventory and Analysis program. Structural dynamics on the late-successional plots reflected orderly change associated with density-dependent growth and mortality, but dynamics on the old-growth plots were more variable. Some plots experienced heavy mortality associated with beech bark disease. Diameter distributions conformed poorly to a classic exponential distribution, and did not converge toward such a distribution at the plot scale. Although large live trees showed a broad trend of increasing density in regional forests, recent harvesting patterns offset a considerable fraction of those gains, while mean diameter was static and the number of large dead trees was weakly declining. Even though forests of the northeast are aging, changes in silviculture and forest policy are necessary to accelerate restoration of old-growth structure
A Generalization of Haldane state-counting procedure and -deformations of statistics
We consider the generalization of Haldane's state-counting procedure to
describe all possible types of exclusion statistics which are linear in the
deformation parameter . The statistics are parametrized by elements of the
symmetric group of the particles in question. For several specific cases we
determine the form of the distribution functions which generalizes results
obtained by Wu. Using them we analyze the low-temperature behavior and
thermodynamic properties of these systems and compare our results with previous
studies of the thermodynamics of a gas of -ons. Various possible physical
applications of these constructions are discussed.Comment: 17 pages, latex, 6 figures small corrections were made, reference and
acknowledgments are adde
Anomalous hydrodynamics and "normal" fluids in rapidly rotating BECs
In rapidly rotating bose systems we show that there is a region of anomalous
hydrodynamics whilst the system is still condensed, which coincides with the
mean field quantum Hall regime. An immediate consequence is the absence of a
normal fluid in any conventional sense. However, even the superfluid
hydrodynamics is not described by conventional Bernoulli and continuity
equations. We show there are kinematic constraints which connect spatial
variations of density and phase, that the positions of vortices are not the
simplest description of the dynamics of such a fluid (despite their utility in
describing the instantaneous state of the condensate) and that the most compact
description allows solution of some illuminating examples of motion. We
demonstrate, inter alia, a very simple relation between vortices and surface
waves. We show the surface waves can form a "normal fluid" which absorbs energy
and angular momentum from vortex motion in the trap. The time scale of this
process is sensitive to the initial configuration of the vortices, which can
lead to long-lived vortex patches - perhaps related to those observed at JILA.Comment: 4 pages; 1 sentence and references modifie
Exact vortex nucleation and cooperative vortex tunneling in dilute BECs
With the imminent advent of mesoscopic rotating BECs in the lowest Landau
level (LLL) regime, we explore LLL vortex nucleation. An exact many-body
analysis is presented in a weakly elliptical trap for up to 400 particles.
Striking non-mean field features are exposed at filling factors >>1 . Eg near
the critical rotation frequency pairs of energy levels approach each other with
exponential accuracy. A physical interpretation is provided by requantising a
mean field theory, where 1/N plays the role of Planck's constant, revealing two
vortices cooperatively tunneling between classically degenerate energy minima.
The tunnel splitting variation is described in terms of frequency, particle
number and ellipticity.Comment: 4 pages,4 figure
Cross-Correlation Studies between CMB Temperature Anisotropies and 21 cm Fluctuations
During the transition from a neutral to a fully reionized universe,
scattering of cosmic microwave background (CMB) photons via free-electrons
leads to a new anisotropy contribution to the temperature distribution. If the
reionization process is inhomogeneous and patchy, the era of reionization is
also visible via brightness temperature fluctuations in the redshifted 21 cm
line emission from neutral Hydrogen. Since regions containing electrons and
neutral Hydrogen are expected to trace the same underlying density field, the
two are (anti) correlated and this is expected to be reflected in the
anisotropy maps via a correlation between arcminute-scale CMB temperature and
the 21 cm background. In terms of the angular cross-power spectrum,
unfortunately, this correlation is insignificant due to a geometric
cancellation associated with second order CMB anisotropies. The same
cross-correlation between ionized and neutral regions, however, can be studied
using a bispectrum involving large scale velocity field of ionized regions from
the Doppler effect, arcminute scale CMB anisotropies during reionization, and
the 21 cm background. While the geometric cancellation is partly avoided, the
signal-to-noise ratio related to this bispectrum is reduced due to the large
cosmic variance related to velocity fluctuations traced by the Doppler effect.
Unless the velocity field during reionization can be independently established,
it is unlikely that the correlation information related to the relative
distribution of ionized electrons and regions containing neutral Hydrogen can
be obtained with a combined study involving CMB and 21 cm fluctuations.Comment: 10 pages, 3 figure
The Effect of Crystallization on the Pulsations of White Dwarf Stars
We consider the pulsational properties of white dwarf star models with
temperatures appropriate for the ZZ Ceti instability strip and with masses
large enough that they should be substantially crystallized. Our work is
motivated by the existence of a potentially crystallized DAV, BPM 37093, and
the expectation that digital surveys in progress will yield many more such
massive pulsators.
A crystallized core makes possible a new class of oscillations, the torsional
modes, although we expect these modes to couple at most weakly to any motions
in the fluid and therefore to remain unobservable. The p-modes should be
affected at the level of a few percent in period, but are unlikely to be
present with observable amplitudes in crystallizing white dwarfs any more than
they are in the other ZZ Ceti's. Most relevant to the observed light variations
in white dwarfs are the g-modes. We find that the kinetic energy of these modes
is effectively excluded from the crystallized cores of our models. As
increasing crystallization pushes these modes farther out from the center, the
mean period spacing between radial overtones increases substantially with the
crystallized mass fraction. In addition, the degree and structure of mode
trapping is affected. The fact that some periods are strongly affected by
changes in the crystallized mass fraction while others are not suggests that we
may be able to disentangle the effects of crystallization from those due to
different surface layer masses.Comment: 18 pages, 5 figures, accepted on 1999 July 2 for publication in the
Astrophysical Journa
The evolution of clustering and bias in the galaxy distribution
This paper reviews the measurements of galaxy correlations at high redshifts,
and discusses how these may be understood in models of hierarchical
gravitational collapse. The clustering of galaxies at redshift one is much
weaker than at present, and this is consistent with the rate of growth of
structure expected in an open universe. If , this observation would
imply that bias increases at high redshift, in conflict with observed
values for known high- clusters. At redshift 3, the population of
Lyman-limit galaxies displays clustering which is of similar amplitude to that
seen today. This is most naturally understood if the Lyman-limit population is
a set of rare recently-formed objects. Knowing both the clustering and the
abundance of these objects, it is possible to deduce empirically the
fluctuation spectrum required on scales which cannot be measured today owing to
gravitational nonlinearities. Of existing physical models for the fluctuation
spectrum, the results are most closely matched by a low-density spatially flat
universe. This conclusion is reinforced by an empirical analysis of CMB
anisotropies, in which the present-day fluctuation spectrum is forced to have
the observed form. Open models are strongly disfavoured, leaving CDM
as the most successful simple model for structure formation.Comment: Invited review at the Royal Society Meeting `Large-scale structure in
the universe', London, March 1998. 20 Pages LaTe
- …