5 research outputs found

    Obp56h Modulates Mating Behavior in Drosophila melanogaster

    Get PDF
    Social interactions in insects are driven by conspecific chemical signals that are detected via olfactory and gustatory neurons. Odorant binding proteins (Obps) transport volatile odorants to chemosensory receptors, but their effects on behaviors remain poorly characterized. Here, we report that RNAi knockdown of Obp56h gene expression in Drosophila melanogaster enhances mating behavior by reducing courtship latency. The change in mating behavior that results from inhibition of Obp56h expression is accompanied by significant alterations in cuticular hydrocarbon (CHC) composition, including reduction in 5-tricosene (5-T), an inhibitory sex pheromone produced by males that increases copulation latency during courtship. Whole genome RNA sequencing confirms that expression of Obp56h is virtually abolished in Drosophila heads. Inhibition of Obp56h expression also affects expression of other chemoreception genes, including upregulation of lush in both sexes and Obp83ef in females, and reduction in expression of Obp19b and Or19b in males. In addition, several genes associated with lipid metabolism, which underlies the production of cuticular hydrocarbons, show altered transcript abundances. Our data show that modulation of mating behavior through reduction of Obp56h is accompanied by altered cuticular hydrocarbon profiles and implicate 5-T as a possible ligand for Obp56h

    Molecular Characterization of teflon, a Gene Required for Meiotic Autosome Segregation in Male Drosophila melanogaster

    No full text
    Drosophila melanogaster males lack recombination and have evolved a mechanism of meiotic chromosome segregation that is independent of both the chiasmatic and achiasmatic segregation systems of females. The teflon (tef) gene is specifically required in males for proper segregation of autosomes and provides a genetic tool for understanding recombination-independent mechanisms of pairing and segregation as well as differences in sex chromosome vs. autosome segregation. Here we report on the cloning of the tef gene and the molecular characterization of tef mutations. Rescue experiments using a GAL4-driven pUAS transgene demonstrate that tef corresponds to predicted Berkeley Drosophila Genome Project (BDGP) gene CG8961 and that tef expression is required in the male germ line prior to spermatocyte stage S4. Consistent with this early prophase requirement, expression of tef was found to be independent of regulators of meiotic M phase initiation or progression. The predicted Tef protein contains three C2H2 zinc-finger motifs, one at the amino terminus and two in tandem at the carboxyl terminus. In addition to the zinc-finger motifs, a 44- to 45-bp repeat is conserved in three related Drosophila species. On the basis of these findings, we propose a role for Tef as a bridging molecule that holds autosome bivalents together via heterochromatic connections

    Natural Variation, Functional Pleiotropy and Transcriptional Contexts of Odorant Binding Protein Genes in Drosophila melanogaster

    No full text
    How functional diversification affects the organization of the transcriptome is a central question in systems genetics. To explore this issue, we sequenced all six Odorant binding protein (Obp) genes located on the X chromosome, four of which occur as a cluster, in 219 inbred wild-derived lines of Drosophila melanogaster and tested for associations between genetic and phenotypic variation at the organismal and transcriptional level. We observed polymorphisms in Obp8a, Obp19a, Obp19b, and Obp19c associated with variation in olfactory responses and polymorphisms in Obp19d associated with variation in life span. We inferred the transcriptional context, or “niche,” of each gene by identifying expression polymorphisms where genetic variation in these Obp genes was associated with variation in expression of transcripts genetically correlated to each Obp gene. All six Obp genes occupied a distinct transcriptional niche. Gene ontology enrichment analysis revealed associations of different Obp transcriptional niches with olfactory behavior, synaptic transmission, detection of signals regulating tissue development and apoptosis, postmating behavior and oviposition, and nutrient sensing. Our results show that diversification of the Obp family has organized distinct transcriptional niches that reflect their acquisition of additional functions
    corecore