13 research outputs found

    Can we distinguish between h^{SM} and h^0 in split supersymmetry?

    Full text link
    We investigate the possibility to distinguish between the Standard Model Higgs boson and the lightest Higgs boson in Split Supersymmetry. We point out that the best way to distinguish between these two Higgs bosons is through the decay into two photons. It is shown that there are large differences of several percent between the predictions for \Gamma(h\to\gamma\gamma) in the two models, making possible the discrimination at future photon-photon colliders. Once the charginos are discovered at the next generation of collider experiments, the well defined predictions for the Higgs decay into two photons will become a cross check to identify the light Higgs boson in Split Supersymmetry.Comment: 8 pages, 3 Figures, typos fixed, version published in J.Phys. G31 (2005) 563-56

    Linear Collider Physics Resource Book for Snowmass 2001, 3: Studies of Exotic and Standard Model Physics

    Get PDF
    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available.This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 3 reviews the possible experiments on that can be done at a linear collider on strongly coupled electroweak symmetry breaking, exotic particles, and extra dimensions, and on the top quark, QCD, and two-photon physics. It also discusses the improved precision electroweak measurements that this collider will make available

    Linear Collider Physics Resource Book for Snowmass 2001 - Part 1: Introduction

    No full text
    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 1 contains the table of contents and introduction and gives a summary of the case for a 500 GeV linear collider

    Linear Collider Physics Resource Book for Snowmass 2001 - Part 4: Theoretical, Accelerator, and Experimental Options

    No full text
    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 4 discusses options for the linear collider program, at a number of levels. First, it presents a broad review of physics beyond the Standard Model, indicating how the linear collider is relevant to each possible pathway. Next, it surveys options for the accelerator and experimental plan, including the questions of the running scenario, the issue of one or two interaction regions, and the options for positron polarization, photon-photon collisions, and e-e- collisions. Finally, it reviews the detector design issues for the linear collider and presents three possible detector designs

    Linear Collider Physics Resource Book for Snowmass 2001, 2: Higgs and Supersymmetry Studies

    No full text
    This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 2 reviews the possible experiments on Higgs bosons and supersymmetric particles that can be done at a linear collider.This Resource Book reviews the physics opportunities of a next-generation e+e- linear collider and discusses options for the experimental program. Part 2 reviews the possible experiments on Higgs bosons and supersymmetric particles that can be done at a linear collider

    Physics and technology of the Next Linear Collider: a report submitted to Snowmass '96

    No full text
    We present the current expectations for the design and physics program of an e+e- linear collider of center of mass energy 500 GeV -- 1 TeV. We review the experiments that would be carried out at this facility and demonstrate its key role in exploring physics beyond the Standard Model over the full range of theoretical possibilities. We then show the feasibility of constructing this machine, by reviewing the current status of linear collider technology and by presenting a precis of our `zeroth-order' design

    Search for Higgs bosons and other massive states decaying into two photons in e+ e- collisions at 189-GeV

    Get PDF
    A search is described for the generic process e+e- to X Y, where X is a neutral heavy scalar boson decaying into a pair of photons, and Y is a neutral heavy boson (scalar or vector) decaying into a fermion pair. The search is motivated mainly by the cases where either X, or both X and Y, are Higgs bosons. In particular, we investigate the case where X is the Standard Model Higgs boson and Y the Z0 boson. Other models with enhanced Higgs boson decay couplings to photon pairs are also considered. The present search combines the data set collected by the OPAL collaboration at 189 GeV collider energy, having an integrated luminosity of 182.6pb-1, with data samples collected at lower energies. The search results have been used to put 95% confidence level bounds, as functions of the mass of X, on the product of the cross-section and the relevant branching ratios, both in a model independent manner and for the particular models considered.Comment: 21 pages, LaTeX, including 5 eps figures, accepted by Phys. Lett.

    ILC Reference Design Report Volume 4 - Detectors

    No full text
    This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics.This report, Volume IV of the International Linear Collider Reference Design Report, describes the detectors which will record and measure the charged and neutral particles produced in the ILC's high energy e+e- collisions. The physics of the ILC, and the environment of the machine-detector interface, pose new challenges for detector design. Several conceptual designs for the detector promise the needed performance, and ongoing detector R&D is addressing the outstanding technological issues. Two such detectors, operating in push-pull mode, perfectly instrument the ILC interaction region, and access the full potential of ILC physics
    corecore