25 research outputs found

    Effects of Some Hormone Applications on Germination and Morphological Characters of Endangered Plant Species Lilium artvinense L. Seeds

    Get PDF
    Lilies are economically important plants because of their large and attractive flowers. Thus, many wild species of lilies have been cultivated to produce Lilium bulbs or flowers. This work was conducted to analyse the effect of hormone applications on Lilium artvinense (Syn: Lilium ponticum K. Koch., Lilium ponticum var. artvinense (Miscz.) P. H. Davis and D. M. Hend., Lilium carniolicum var. artvinense (Miscz.) P. H. Davis and D. M. Hend and Lilium pyrenaicum var. artvinense (Miscz.) V.A. Matthews) seeds on germination percentage and seedlings morphological traits. In the research, 1000, 3000 and 5000 ppm doses of IAA, IBA, NAA and GA3 hormones were applied to L. artvinense seeds and approximately 180 days later, the number of roots, root length, offset stem height and diameter were assessed. As a result, while the control group except 5000 ppm NNA application achieved an increase in the percentage of germination (40%) of all the applications. Germination frequency up to 100% was obtained using 5000 ppm GA3. Effects of hormone applications on other key morphological characters (rooting percentage, root height, number of scions, scion height and width) are described in terms of growth rate between 1.27 and 2.44

    Influence of different glycoproteins and of the virion core on SERINC5 antiviral activity [preprint]

    Get PDF
    Host plasma membrane protein SERINC5 is incorporated into budding retrovirus particles where it blocks subsequent entry into susceptible target cells. Three accessory proteins encoded by diverse retroviruses, HIV-1 Nef, EIAV S2, and MLV Glycogag, each independently disrupt SERINC5 antiviral activity, by redirecting SERINC5 from the site of virion assembly on the plasma membrane to an internal RAB7+ endosomal compartment. Pseudotyping retroviruses with particular glycoproteins, e.g., the vesicular stomatitis glycoprotein (VSV G), renders the infectivity of particles resistant to inhibition by virion-associated SERINC5. To better understand viral determinants for SERINC5-sensitivity, the effect of SERINC5 was assessed using HIV-1, MLV, and M-PMV virion cores, pseudotyped with glycoproteins from Arenavirus, Coronavirus, Filovirus, Rhabdovirus, Paramyxovirus, and Orthomyxovirus genera. Infectivity of particles, pseudotyped with HIV-1, amphotropic-MLV, or influenza virus glycoproteins, was decreased by SERINC5, whether the core was provided by HIV-1, MLV, or M-PMV. Particles generated by all three cores, and pseudotyped with glycoproteins from either avian leukosis virus-A, human endogenous retrovirus K (HERV-K), ecotropic-MLV, HTLV-1, Measles morbillivirus, lymphocytic choriomeningitis mammarenavirus (LCMV), Marburg virus, Ebola virus, severe acute respiratory syndrome-related coronavirus (SARS-CoV), or VSV, were insensitive to SERINC5. In contrast, particles pseudotyped with M-PMV, RD114, or rabies virus (RABV) glycoproteins were sensitive to SERINC5, but only with particular retroviral cores. Resistance to SERINC5 by particular glycoproteins did not correlate with reduced SERINC5 incorporation into particles or with the route of viral entry. These findings indicate that some non-retroviruses may be sensitive to SERINC5 and that, in addition to the viral glycoprotein, the retroviral core influences sensitivity to SERINC5

    Primate immunodeficiency virus Vpx and Vpr counteract transcriptional repression of proviruses by the HUSH complex [preprint]

    Get PDF
    Drugs that inhibit HIV-1 replication and prevent progression to AIDS do not eliminate HIV-1 proviruses from the chromosomes of long-lived CD4+ memory T cells. To escape eradication by these antiviral drugs, or by the host immune system, HIV-1 exploits poorly defined host factors that silence provirus transcription. These same factors, though, must be overcome by all retroviruses, including HIV-1 and other primate immunodeficiency viruses, in order to activate provirus transcription and produce new virus. Here we show that Vpx and Vpr, proteins from a wide range of primate immunodeficiency viruses, activate provirus transcription in human CD4+ T cells. Provirus activation required the DCAF1 adaptor that links Vpx and Vpr to the CUL4A/B ubiquitin ligase complex, but did not require degradation of SAMHD1, a well-characterized target of Vpx and Vpr. A loss-of-function screen for transcription silencing factors that mimic the effect of Vpx on provirus silencing identified all components of the Human Silencing Hub (HUSH) complex, FAM208A (TASOR/RAP140), MPHOSPH8 (MPP8), PPHLN1 (PERIPHILIN), and MORC2. Vpx associated with the HUSH complex components and decreased steady-state levels of these proteins in a DCAF-dependent manner. Finally, vpx and FAM208A knockdown accelerated HIV-1 and SIVMAC replication kinetics in CD4+ T cells to a similar extent, and HIV-2 replication required either vpx or FAM208A disruption. These results demonstrate that the HUSH complex restricts transcription of primate immunodeficiency viruses and thereby contributes to provirus latency. To counteract this restriction and activate provirus expression, primate immunodeficiency viruses encode Vpx and Vpr proteins that degrade HUSH complex components

    Isolated unilateral hypoglossal nerve paralysis: A case report

    No full text
    Isolated unilateral hypoglossal nerve paralysis is a rare condition. The etiologic factors that may cause this are cancer metastases, infection, endocrine, neurological, autoimmune and vascular reasons. A 56-year-old male patient complained of swelling, speech impairment and biting the left side of the tongue for 2 years. [Med-Science 2017; 6(3.000): 613-

    Tissue distribution of some immune cells in bovine reproductive tract during follicular and luteal phase

    No full text
    More recent studies indicate that immune cells which secrete their secretory products or cytokines play an important role in reproductive system. In our study, immune cell populations (CD8(+) T lymphocytes, CD68(+) macrophages, plasma cells, siderophages, eosinophils) and expression of major histocompatibility complex (MHC) class I and class II were examined in female reproductive tract during follicular (n=13) and luteal phase (n=10). Plasma cells and eosinophil granulocytes are present in few numbers in luminal epithelium, but abundant in longitudinal muscle layer of uterus, whereas siderophages are the dominant cell type in stroma. Moreover, MHC-I and -II+ cells are expressed by individual cells in organ layers, while CD8(+) T cells and CD68(+) macrophages are dominant in epithelium and muscle layer, respectively. In conclusion, we did not found significant changes in immune cells according to follicular and luteal phases, but localization and numbers in each organ have changed according to both organ and layers. These results indicate that these factors may play a crucial role not only to generate an immune response but also to have a role in regulation of physiological functions in female reproductive organs

    Expression and localisation of epidermal growth factor receptors and their ligands in the lower genital tract of cycling cows

    No full text
    The epidermal growth factor receptor (ErbB) family and its ligands are essential for the regulation of multiple cellular processes required for mammalian reproduction. The objectives of this study were to investigate the expression and localisation of ErbB subtypes (ErbB1-4) and selected ligands, namely epidermal growth factor (EGF), amphiregulin (AREG) and neuregulin (NRG), in the cervix and vagina of cycling cows and to determine possible steroid hormone-dependence of their expression using immunohistochemistry. All four ErbBs and EGF, AREG and NRG proteins were found to be localised in the nucleus and cytoplasm of different cells in the cervix and vagina, and their expression differed during the oestrous cycle. During the follicular phase, in both the cervix and vagina, ErbB1, ErbB2, ErbB3, ErbB4 and EGF expression was higher in the luminal epithelium (LE) than in stromal and smooth muscle (SM) cells (P0.05). Overall, these results suggest that all four ErbBs and the EGF, AREG and NRG proteins may collectively contribute to several cellular processes in the bovine cervix and vagina during the oestrous cycle

    Influence of Different Glycoproteins and of the Virion Core on SERINC5 Antiviral Activity

    Get PDF
    Host plasma membrane protein SERINC5 is incorporated into budding retrovirus particles where it blocks subsequent entry into susceptible target cells. Three structurally unrelated proteins encoded by diverse retroviruses, human immunodeficiency virus type 1 (HIV-1) Nef, equine infectious anemia virus (EIAV) S2, and ecotropic murine leukemia virus (MLV) GlycoGag, disrupt SERINC5 antiviral activity by redirecting SERINC5 from the site of virion assembly on the plasma membrane to an internal RAB7+ endosomal compartment. Pseudotyping retroviruses with particular glycoproteins, e.g., vesicular stomatitis virus glycoprotein (VSV G), renders the infectivity of particles resistant to inhibition by virion-associated SERINC5. To better understand viral determinants for SERINC5-sensitivity, the effect of SERINC5 was assessed using HIV-1, MLV, and Mason-Pfizer monkey virus (M-PMV) virion cores, pseudotyped with glycoproteins from Arenavirus, Coronavirus, Filovirus, Rhabdovirus, Paramyxovirus, and Orthomyxovirus genera. SERINC5 restricted virions pseudotyped with glycoproteins from several retroviruses, an orthomyxovirus, a rhabdovirus, a paramyxovirus, and an arenavirus. Infectivity of particles pseudotyped with HIV-1, amphotropic-MLV (A-MLV), or influenza A virus (IAV) glycoproteins, was decreased by SERINC5, whether the core was provided by HIV-1, MLV, or M-PMV. In contrast, particles pseudotyped with glycoproteins from M-PMV, parainfluenza virus 5 (PIV5), or rabies virus (RABV) were sensitive to SERINC5, but only with particular retroviral cores. Resistance to SERINC5 did not correlate with reduced SERINC5 incorporation into particles, route of viral entry, or absolute infectivity of the pseudotyped virions. These findings indicate that some non-retroviruses may be sensitive to SERINC5 and that, in addition to the viral glycoprotein, the retroviral core influences sensitivity to SERINC5

    The HIV-1 capsid core is an opportunistic nuclear import receptor

    No full text
    Abstract The movement of viruses and other large macromolecular cargo through nuclear pore complexes (NPCs) is poorly understood. The human immunodeficiency virus type 1 (HIV-1) provides an attractive model to interrogate this process. HIV-1 capsid (CA), the chief structural component of the viral core, is a critical determinant in nuclear transport of the virus. HIV-1 interactions with NPCs are dependent on CA, which makes direct contact with nucleoporins (Nups). Here we identify Nup35, Nup153, and POM121 to coordinately support HIV-1 nuclear entry. For Nup35 and POM121, this dependence was dependent cyclophilin A (CypA) interaction with CA. Mutation of CA or removal of soluble host factors changed the interaction with the NPC. Nup35 and POM121 make direct interactions with HIV-1 CA via regions containing phenylalanine glycine motifs (FG-motifs). Collectively, these findings provide additional evidence that the HIV-1 CA core functions as a macromolecular nuclear transport receptor (NTR) that exploits soluble host factors to modulate NPC requirements during nuclear invasion
    corecore