5 research outputs found

    Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling

    No full text
    The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi–Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases

    SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate

    No full text
    Versiones preprint disponibles en: http://hdl.handle.net/10261/216920 y http://hdl.handle.net/10261/217161Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here, we demonstrate that the NRF2 antioxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular antiviral program that potently inhibits replication of SARS-CoV2 across cell lines. The inhibitory effect of 4-OI and DMF extends to the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, 4-OI and DMF limit host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and in suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2.This research work was supported by Ester M og Konrad Kristian Sigurdssons Dyreværnsfond, Beckett-Fonden, Kong Christian IX og Dronning Louises Jubilæumslegat, Læge Sofus Carl Emil Friis og Hustru Olga Doris Friis´ legat, Købmand I Odense Johan og Hanne Weimann Født Seedorffs Legat, Hørslev Fonden, UK Medical Research Council (MRC core funding of the MRC Human Immunology Unit; JR), Lundbeck foundation (R303-2018-3379 and R219-2016-878, and R268-2016-3927), and Independent Research Fund Denmark – Medical Sciences (9039-00078B, 4004-00047B, and 0214-00001B). CarlsbergFoundation (Semper Ardens) and European Research Council (ERC-AdG ENVISION; 786602). Marie Skłodowska-Curie Action of the European Commission # 813343 and Italian Cancer Research Society #22891 to JH.Peer reviewe
    corecore