10 research outputs found

    Quantitative Metabolite Profiling Utilizing Parallel Column Analysis for Simultaneous Reversed-Phase and Hydrophilic Interaction Liquid Chromatography Separations Combined with Tandem Mass Spectrometry

    No full text
    In this work, a fully automated parallel LC column method was established in order to perform orthogonal hydrophilic interaction chromatography (HILIC) and reversed-phase (RPLC) chromatography within one analytical run for targeted quantitative mass spectrometric determination of metabolites from central carbon metabolism. In this way, the analytical throughput could be significantly improved compared to previously established dual separation work flows involving two separate analytical runs. Two sample aliquots were simultaneously injected onto a dual column setup columns using a ten-port valve, and parallel separations were carried out. Sub 2 μm particle size stationary phases were employed for both separation methods. HILIC and RPLC eluents were combined post column followed by ESI-MS/MS detection. The orthogonal separations were optimized, aiming at an overall separation with 2 retention time segments, while reversed-phase separation was accomplished within 5.5 min; metabolites on the HILIC phase were retained for a minimum time of 6 min. The overall run time was 15 min. The setup was applied to the quantification of 30 primary intercellular metabolites, including amino acids, organic acids, and nucleotides employing internal standardization by a fully <sup>13</sup>C-labeled yeast extract. The comparison with HILIC–MS/MS and RPLC–MS/MS in separate analytical runs revealed that an excellent analytical performance was achieved by the parallel LC column method. The experimental repeatability (<i>N</i> = 5) was on average <5% (only for 2 compounds >5%). Moreover, limits of detection for the new approach ranging from 0.002–15 μM were in a good agreement with ones obtained in separate HILIC–MS/MS and RPLC–MS/MS runs (ranging from 0.01–44 μM)

    Anion-Exchange Chromatography Coupled to High-Resolution Mass Spectrometry: A Powerful Tool for Merging Targeted and Non-targeted Metabolomics

    No full text
    In this work, simultaneous targeted metabolic profiling by isotope dilution and non-targeted fingerprinting is proposed for cancer cell studies. The novel streamlined metabolomics workflow was established using anion-exchange chromatography (IC) coupled to high-resolution mass spectrometry (MS). The separation time of strong anion-exchange (2 mm column, flow rate 380 μL min<sup>–1</sup>, injection volume 5 μL) could be decreased to 25 min for a target list comprising organic acids, sugars, sugar phosphates, and nucleotides. Internal standardization by fully <sup>13</sup>C labeled <i>Pichia pastoris</i> extracts enabled absolute quantification of the primary metabolites in adherent cancer cell models. Limits of detection (LODs) in the low nanomolar range and excellent intermediate precisions of the isotopologue ratios (on average <5%, <i>N</i> = 5, over 40 h) were observed. As a result of internal standardization, linear dynamic ranges over 4 orders of magnitude (5 nM–50 μM, <i>R</i><sup>2</sup> > 0.99) were obtained. Experiments on drug-sensitive versus resistant SW480 cancer cells showed the feasibility of merging analytical tasks into one analytical run. Comparing fingerprinting with and without internal standard proved that the presence of the <sup>13</sup>C labeled yeast extract required for absolute quantification was not detrimental to non-targeted data evaluation. Several interesting metabolites were discovered by accurate mass and comparing MS2 spectra (acquired in ddMS2 mode) with spectral libraries. Significant differences revealed distinct metabolic phenotypes of drug-sensitive and resistant SW480 cells

    Integrated Exposomics/Metabolomics for Rapid Exposure and Effect Analyses

    No full text
    The totality of environmental exposures and lifestyle factors, commonly referred to as the exposome, is poorly understood. Measuring the myriad of chemicals that humans are exposed to is immensely challenging, and identifying disrupted metabolic pathways is even more complex. Here, we present a novel technological approach for the comprehensive, rapid, and integrated analysis of the endogenous human metabolome and the chemical exposome. By combining reverse-phase and hydrophilic interaction liquid chromatography (HILIC) and fast polarity-switching, molecules with highly diverse chemical structures can be analyzed in 15 min with a single analytical run as both column’s effluents are combined before analysis. Standard reference materials and authentic standards were evaluated to critically benchmark performance. Highly sensitive median limits of detection (LODs) with 0.04 μM for >140 quantitatively assessed endogenous metabolites and 0.08 ng/mL for the >100 model xenobiotics and human estrogens in solvent were obtained. In matrix, the median LOD values were higher with 0.7 ng/mL (urine) and 0.5 ng/mL (plasma) for exogenous chemicals. To prove the dual-column approach’s applicability, real-life urine samples from sub-Saharan Africa (high-exposure scenario) and Europe (low-exposure scenario) were assessed in a targeted and nontargeted manner. Our liquid chromatography high-resolution mass spectrometry (LC-HRMS) approach demonstrates the feasibility of quantitatively and simultaneously assessing the endogenous metabolome and the chemical exposome for the high-throughput measurement of environmental drivers of diseases

    Integrated Exposomics/Metabolomics for Rapid Exposure and Effect Analyses

    No full text
    The totality of environmental exposures and lifestyle factors, commonly referred to as the exposome, is poorly understood. Measuring the myriad of chemicals that humans are exposed to is immensely challenging, and identifying disrupted metabolic pathways is even more complex. Here, we present a novel technological approach for the comprehensive, rapid, and integrated analysis of the endogenous human metabolome and the chemical exposome. By combining reverse-phase and hydrophilic interaction liquid chromatography (HILIC) and fast polarity-switching, molecules with highly diverse chemical structures can be analyzed in 15 min with a single analytical run as both column’s effluents are combined before analysis. Standard reference materials and authentic standards were evaluated to critically benchmark performance. Highly sensitive median limits of detection (LODs) with 0.04 μM for >140 quantitatively assessed endogenous metabolites and 0.08 ng/mL for the >100 model xenobiotics and human estrogens in solvent were obtained. In matrix, the median LOD values were higher with 0.7 ng/mL (urine) and 0.5 ng/mL (plasma) for exogenous chemicals. To prove the dual-column approach’s applicability, real-life urine samples from sub-Saharan Africa (high-exposure scenario) and Europe (low-exposure scenario) were assessed in a targeted and nontargeted manner. Our liquid chromatography high-resolution mass spectrometry (LC-HRMS) approach demonstrates the feasibility of quantitatively and simultaneously assessing the endogenous metabolome and the chemical exposome for the high-throughput measurement of environmental drivers of diseases

    Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry-Based Determination of Isotopologue and Tandem Mass Isotopomer Fractions of Primary Metabolites for <sup>13</sup>C‑Metabolic Flux Analysis

    No full text
    For the first time an analytical work flow based on accurate mass gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOFMS) with chemical ionization for analysis providing a comprehensive picture of <sup>13</sup>C distribution along the primary metabolism is elaborated. The method provides a powerful new toolbox for <sup>13</sup>C-based metabolic flux analysis, which is an emerging strategy in metabolic engineering. In this field, stable isotope tracer experiments based on, for example, <sup>13</sup>C are central for providing characteristic patterns of labeled metabolites, which in turn give insights into the regulation of metabolic pathway kinetics. The new method enables the analysis of isotopologue fractions of 42 free intracellular metabolites within biotechnological samples, while tandem mass isotopomer information is also accessible for a large number of analytes. Hence, the method outperforms previous approaches in terms of metabolite coverage, while also providing rich isotopomer information for a significant number of key metabolites. Moreover, the established work flow includes novel evaluation routines correcting for isotope interference of naturally distributed elements, which is crucial following derivatization of metabolites. Method validation in terms of trueness, precision, and limits of detection was performed, showing excellent analytical figures of merit with an overall maximum bias of 5.8%, very high precision for isotopologue and tandem mass isotopomer fractions representing >10% of total abundance, and absolute limits of detection in the femtomole range. The suitability of the developed method is demonstrated on a flux experiment of <i>Pichia pastoris</i> employing two different tracers, i.e., 1,6<sup>13</sup>C<sub>2</sub>-glucose and uniformly labeled <sup>13</sup>C-glucose

    Semiquantitative Analysis for High-Speed Mapping Applications of Biological Samples Using LA-ICP-TOFMS

    No full text
    Laser ablation (LA) in combination with inductively coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) enables monitoring of elements from the entire mass range for every pixel, regardless of the isotopes of interest for a certain application. This provides nontargeted multi-element (bio-)imaging capabilities and the unique possibility to screen for elements that were initially not expected in the sample. Quantification of a large range of elements is limited as the preparation of highly multiplexed calibration standards for bioimaging applications by LA-ICP-(TOF)MS is challenging. In this study, we have developed a workflow for semiquantitative analysis by LA-ICP-TOFMS based on multi-element gelatin micro-droplet standards. The presented approach is intended for the mapping of biological samples due to the requirement of matrix-matched standards for accurate quantification in LA-ICPMS, a prerequisite that is given by the use of gelatin-based standards. A library of response factors was constructed based on 72 elements for the semiquantitative calculations. The presented method was evaluated in two stages: (i) on gelatin samples with known elemental concentrations and (ii) on real-world samples that included prime examples of bioimaging (mouse spleen and tumor tissue). The developed semiquantification approach was based on 10 elements as calibration standards and provided the determination of 136 nuclides of 63 elements, with errors below 25%, and for half of the nuclides, below 10%. A web application for quantification and semiquantification of LA-ICP(-TOF)MS data was developed, and a detailed description is presented to easily allow others to use the presented method

    A Novel Lipidomics Workflow for Improved Human Plasma Identification and Quantification Using RPLC-MSn Methods and Isotope Dilution Strategies

    No full text
    Lipid identification and quantification are essential objectives in comprehensive lipidomics studies challenged by the high number of lipids, their chemical diversity, and their dynamic range. In this work, we developed a tailored method for profiling and quantification combining (1) isotope dilution, (2) enhanced isomer separation by C30 fused-core reversed-phase material, and (3) parallel Orbitrap and ion trap detection by the Orbitrap Fusion Lumos Tribid mass spectrometer. The combination of parallelizable ion analysis without time loss together with different fragmentation techniques (HCD/CID) and an inclusion list led to higher quality in lipid identifications exemplified in human plasma and yeast samples. Moreover, we used lipidome isotope-labeling of yeast (LILY)a fast and efficient in vivo labeling strategy in <i>Pichia pastoris</i>to produce (nonradioactive) isotopically labeled eukaryotic lipid standards in yeast. We integrated the <sup>13</sup>C lipids in the LC-MS workflow to enable relative and absolute compound-specific quantification in yeast and human plasma samples by isotope dilution. Label-free and compound-specific quantification was validated by comparison against a recent international interlaboratory study on human plasma SRM 1950. In this way, we were able to prove that LILY enabled quantification leads to accurate results, even in complex matrices. Excellent analytical figures of merit with enhanced trueness, precision and linearity over 4–5 orders of magnitude were observed applying compound-specific quantification with <sup>13</sup>C-labeled lipids. We strongly believe that lipidomics studies will benefit from incorporating isotope dilution and LC-MSn strategies

    Additional file 4: of Systems-level organization of yeast methylotrophic lifestyle

    No full text
    Proteomic identification and quantification of methanol metabolic enzymes and control proteins in peroxisomal fractions and homogenates of P. pastoris cells grown on methanol. Containing the following three sheets: Protein hits: contains all identified proteins that met the threshold in at least one sample, with their respective MASCOT scores, number of peptides, and percent sequence coverage. Peptide hits: list of all identified peptides, their MASCOT scores, mass and charge values, and intensities. Peptides used for quant + areas: lists all peptides of the proteins in Table 3 that were used for quantification, and their respective peak areas in the different samples. (XLSX 879 kb

    Additional file 1: of Systems-level organization of yeast methylotrophic lifestyle

    No full text
    Transcriptomic, proteomic, and metabolomic regulation of P. pastoris during methylotrophic growth. Containing the following eight sheets: Summary Omics Data: number of significantly regulated genes, proteins or metabolites (e.g. “up” refers to up-regulation in methanol/glycerol compared to glucose). Transcriptomics and proteomics: Average fold changes and P values of transcriptomics and proteomics comparing P. pastoris cultivated with methanol/glycerol or glucose as carbon source in chemostat. Average values derive from three biological replicates per condition. Metabolomics: Average fold changes and P values of metabolomics measurements comparing P. pastoris cultivated with methanol/glycerol or glucose as carbon source in chemostat cultivations. Average values derive from three biological replicates per condition. Co-regulation (related to Fig. 1 in the text): Regulation of the 575 gene-protein pairs with transcriptomics and proteomics data available and assignment to regulatory groups. Central carbon metabolism (related to Fig. 4 in the text): Average fold changes and P values of transcriptomics, proteomics, and metabolomics measurement depicted in Fig. 4. Amino acid metabolism (related to Fig. 6 in the text): Average fold changes and P values of transcriptomics, proteomics, and metabolomics measurement depicted in Fig. 6. Vitamin biosynthesis (related to Fig. 7 in the text): Average fold changes and P values of transcriptomics, proteomics, and metabolomics measurement depicted in Fig. 7. Peroxisomal gene regulation: Average fold changes and P values of transcriptomics and proteomics for all mentioned peroxisomal genes. Average values derive from three biological replicates per condition. (XLSX 2348 kb
    corecore