5 research outputs found

    Luminescence and Charge-transfer .2. Aminomethyl Anthracene-derivatives As Fluorescent Pet (photoinduced Electron-transfer) Sensors for Protons

    No full text
    The importance of the modular structure 'fluor-spacer-amine' is pointed out for the design of fluorescent molecular sensors for pH according to the principle of photoinduced electron transfer (PET). Anthracen-9-yl methylamines (24) and some azacrown ether analogues (15 and 23) are examined in this context. They show pH-dependent fluorescence quantum yields describable by eqn. (5) while all other electronic spectral parameters remain essentially pH-invariant. The range of pK(a) values of these sensors are understandable in terms of macrocyclic effects and the transmission of electric fields across the anthracene short axis. Phase-shift fluorometric determination of the fluorescence lifetimes of these sensors allows the calculation of the rate constant of PET in their proton-free form to be 10(10)-10(11) s-1, with the diamines 23 and 24b exhibiting the faster rates

    Frustrated Lewis pairs in ionic liquids and molecular solvents - neutron scattering and NMR study of encounter complexes

    Get PDF
    The presence of the weakly-associated encounter complex in the model frustrated Lewis pair solution (FLP): tris(tert-butyl)phosphine (P(tBu)3) and tris(pentafluorophenyl)borane (BCF) in benzene, was confirmed via P⋯B correlation analysis from neutron scattering data. On average, ca. 5% of dissolved FLP components were in the associated state. NMR spectra of the FLP in benzene gave no evidence of such association, in agreement with earlier reports and the transient nature of the encounter complex. In contrast, the corresponding FLP solution in the ionic liquid, 1-decyl-3-methylimidazolium bistriflamide, [C10mim][NTf2], generated NMR signals that can be attributed to formation of encounter complexes involving over 20% of the dissolved species. The low diffusivity characteristics of ionic liquids is suggested to enhance high populations of encounter complex. The FLP in the ionic liquid solution retained its ability to split hydrogen
    corecore