3 research outputs found
Outbreak of pandemic influenza A/H1N1 2009 in Nepal
<p>Abstract</p> <p>Background</p> <p>The 2009 flu pandemic is a global outbreak of a new strain of H1N1 influenza virus. Pandemic influenza A (H1N1) 2009 has posed a serious public health challenge world-wide. Nepal has started Laboratory diagnosis of Pandemic influenza A/H1N1 from mid June 2009 though active screening of febrile travellers with respiratory symptoms was started from April 27, 2009.</p> <p>Results</p> <p>Out of 609 collected samples, 302 (49.6%) were Universal Influenza A positive. Among the influenza A positive samples, 172(28.3%) were positive for Pandemic influenza A/H1N1 and 130 (21.3%) were Seasonal influenza A. Most of the pandemic cases (53%) were found among young people with ≤ 20 years. Case Fatality Ratio for Pandemic influenza A/H1N1 in Nepal was 1.74%. Upon Molecular characterization, all the isolated pandemic influenza A/H1N1 2009 virus found in Nepal were antigenically and genetically related to the novel influenza A/CALIFORNIA/07/2009-LIKE (H1N1)v type.</p> <p>Conclusion</p> <p>The Pandemic 2009 influenza virus found in Nepal were antigenically and genetically related to the novel A/CALIFORNIA/07/2009-LIKE (H1N1)v type.</p
Catheter-Associated Urinary Tract Infection and Obstinate Biofilm Producers
Background. Biofilms, or colonies of uropathogen growing on the surface of indwelling medical devices, can inflict obstinate or recurring infection, thought-provoking antimicrobial therapy. Methods. This prospective analysis included 105 urine samples from catheterized patients receiving intensive care. Ensuing phenotypic identification, antibiotic sensitivity test was performed by modified Kirby–Bauer disc diffusion method following CLSI guidelines; MDR isolates were identified according to the combined guidelines of the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC). Biofilm-forming uropathogens were detected by the tissue culture plate (TCA) method. Results. The predominant uropathogen in catheter-associated UTIs (CAUTIs) was Escherichia coli 57%, followed by Klebsiella pneumonia 15%, Pseudomonas aeruginosa 12%, Staphylococcus aureus 8%, Enterobacter spp. 3%, Enterococcus faecalis, Acinetobacter spp., and Proteus mirabilis 1.5%, of which 46% isolates were biofilm producers. Prime biofilm producers were Escherichia coli 33%, followed by Klebsiella pneumoniae 30%, Pseudomonas aeruginosa 20%, Staphylococcus aureus 10%, Acinetobacter, and Enterobacter 3.33%. Multidrug resistance associated with biofilm producers were greater than biofilm nonproducers. The Gram-negative biofilm producers found 96.15%, 80.76%, 73.07%, 53.84%, 53.84%, 46.15%, 19.23%, and 11.5% resistant to amoxyclave, ceftazidime, tetracycline, gentamicin, meropenem, nitrofurantoin, amikacin, imipenem, and fosfomycin, respectively. Gram-positive biofilm producers, however, were found 100% resistant to tetracycline, cloxacillin, and amoxyclave: 66.67% resistant to ampicillin while 33.33% resistant to gentamicin, ciprofloxacin, and nitrofurantoin. Conclusion. High antimicrobial resistance was observed in biofilm producers than non-biofilm producers. Of recommended antimicrobial therapies for CAUTIs, ampicillin and amoxicillin-clavulanate were the least active antibiotics, whereas piperacillin/tazobactam and imipenem were found as the most effectual for gram-negative biofilm producer. Likewise, amoxicillin-clavulanate and tetracycline were the least active antibiotics, whereas vancomycin, fosfomycin, piperacillin-tazobactam, and meropenem were found as the most effective antibiotic for Gram-positive biofilm producer. In the limelight, the activity fosfomycin was commendable against both Gram-positive and Gram-negative biofilm producers