64 research outputs found

    Gravity Waves Signatures from Anisotropic pre-Inflation

    Full text link
    We show that expanding or contracting Kasner universes are unstable due to the amplification of gravitational waves (GW). As an application of this general relativity effect, we consider a pre-inflationary anisotropic geometry characterized by a Kasner-like expansion, which is driven dynamically towards inflation by a scalar field. We investigate the evolution of linear metric fluctuations around this background, and calculate the amplification of the long-wavelength GW of a certain polarization during the anisotropic expansion (this effect is absent for another GW polarization, and for scalar fluctuations). These GW are superimposed to the usual tensor modes of quantum origin from inflation, and are potentially observable if the total number of inflationary e-folds exceeds the minimum required to homogenize the observable universe only by a small margin. Their contribution to the temperature anisotropy angular power spectrum decreases with the multipole l as l^(-p), where p depends on the slope of the initial GW power-spectrum. Constraints on the long-wavelength GW can be translated into limits on the total duration of inflation and the initial GW amplitude. The instability of classical GW (and zero-vacuum fluctuations of gravitons) during Kasner-like expansion (or contraction) may have other interesting applications. In particular, if GW become non-linear, they can significantly alter the geometry before the onset of inflation

    Anisotropic Inflation with Non-Abelian Gauge Kinetic Function

    Full text link
    We study an anisotropic inflation model with a gauge kinetic function for a non-abelian gauge field. We find that, in contrast to abelian models, the anisotropy can be either a prolate or an oblate type, which could lead to a different prediction from abelian models for the statistical anisotropy in the power spectrum of cosmological fluctuations. During a reheating phase, we find chaotic behaviour of the non-abelian gauge field which is caused by the nonlinear self-coupling of the gauge field. We compute a Lyapunov exponent of the chaos which turns out to be uncorrelated with the anisotropy.Comment: 16 pages, 4 figure

    New symmetries in Fierz-Pauli massive gravity

    Full text link
    We expose a new symmetry for linear perturbations around a solution of non-linear Fierz-Pauli massive gravity plus a bare cosmological constant. The cosmological constant is chosen such that the background metric is flat while the Stuckelberg fields have a non-trivial profile. Around this background, at linear order the new symmetry reduces the propagating degrees of freedom to those of General Relativity, namely the massless helicity 2 modes only. We discuss the physical consequences and possible applications of these findings.Comment: 9 pages, no figure

    Gravitational Field Equations on and off a 3-Brane World

    Full text link
    The effective gravitational field equations on and off a 3-brane world possessing a Z_{2} mirror symmetry and embedded in a five-dimensional bulk spacetime with cosmological constant were derived by Shiromizu, Maeda and Sasaki (SMS) in the framework of the Gauss-Codazzi projective approach with the subsequent specialization to the Gaussian normal coordinates in the neighborhood of the brane. However, the Gaussian normal coordinates imply a very special slicing of spacetime and clearly, the consistent analysis of the brane dynamics would benefit from complete freedom in the slicing of spacetime, pushing the layer surfaces in the fifth dimension at any rates of evolution and in arbitrary positions. We generalize the SMS effective field equations on and off a 3-brane to the case where there is an arbitrary energy-momentum tensor in the bulk. We use a more general setting to allow for acceleration of the normals to the brane surface through the lapse function and the shift vector in the spirit of Arnowitt, Deser and Misner. We show that the gravitational influence of the bulk spacetime on the brane may be described by a traceless second-rank tensor W_{ij}, constructed from the "electric" part of the bulk Riemann tensor. We also present the evolution equations for the tensor W_{ij}, as well as for the corresponding "magnetic" part of the bulk curvature. These equations involve the terms determined by both the nonvanishing acceleration of normals in the nongeodesic slicing of spacetime and the presence of other fields in the bulk.Comment: 22 pages, REVTEX

    Cosmological perturbations in Massive Gravity and the Higuchi bound

    Full text link
    In de Sitter spacetime there exists an absolute minimum for the mass of a spin-2 field set by the Higuchi bound m^2 \geq 2H^2. We generalize this bound to arbitrary spatially flat FRW geometries in the context of the recently proposed ghost-free models of Massive Gravity with an FRW reference metric, by performing a Hamiltonian analysis for cosmological perturbations. We find that the bound generically indicates that spatially flat FRW solutions in FRW massive gravity, which exhibit a Vainshtein mechanism in the background as required by consistency with observations, imply that the helicity zero mode is a ghost. In contradistinction to previous works, the tension between the Higuchi bound and the Vainshtein mechanism is equally strong regardless of the equation of state for matter.Comment: 24 pages, typos and conventions correcte

    Bounce and cyclic cosmology in extended nonlinear massive gravity

    Full text link
    We investigate non-singular bounce and cyclic cosmological evolutions in a universe governed by the extended nonlinear massive gravity, in which the graviton mass is promoted to a scalar-field potential. The extra freedom of the theory can lead to certain energy conditions violations and drive cyclicity with two different mechanisms: either with a suitably chosen scalar-field potential under a given Stuckelberg-scalar function, or with a suitably chosen Stuckelberg-scalar function under a given scalar-field potential. Our analysis shows that extended nonlinear massive gravity can alter significantly the evolution of the universe at both early and late times.Comment: 20 pages, 5 figures, version published at JCA

    Cosmological Solutions in Bimetric Gravity and their Observational Tests

    Full text link
    We obtain the general cosmological evolution equations for a classically consistent theory of bimetric gravity. Their analytic solutions are demonstrated to generically allow for a cosmic evolution starting out from a matter dominated FLRW universe while relaxing towards a de Sitter (anti-de Sitter) phase at late cosmic time. In particular, we examine a subclass of models which contain solutions that are able to reproduce the expansion history of the cosmic concordance model inspite of the nonlinear couplings of the two metrics. This is demonstrated explicitly by fitting these models to observational data from Type Ia supernovae, Cosmic Microwave Background and Baryon Acoustic Oscillations.Comment: Latex, 26 pages. References added and minor revision of introduction and appendix

    Non-detection of a statistically anisotropic power spectrum in large-scale structure

    Get PDF
    We search a sample of photometric luminous red galaxies (LRGs) measured by the Sloan Digital Sky Survey (SDSS) for a quadrupolar anisotropy in the primordial power spectrum, in which P(\vec{k}) is an isotropic power spectrum P(k) multiplied by a quadrupolar modulation pattern. We first place limits on the 5 coefficients of a general quadrupole anisotropy. We also consider axisymmetric quadrupoles of the form P(\vec{k}) = P(k){1 + g_*[(\hat{k}\cdot\hat{n})^2-1/3]} where \hat{n} is the axis of the anisotropy. When we force the symmetry axis \hat{n} to be in the direction (l,b)=(94 degrees,26 degrees) identified in the recent Groeneboom et al. analysis of the cosmic microwave background, we find g_*=0.006+/-0.036 (1 sigma). With uniform priors on \hat{n} and g_* we find that -0.41<g_*<+0.38 with 95% probability, with the wide range due mainly to the large uncertainty of asymmetries aligned with the Galactic Plane. In none of these three analyses do we detect evidence for quadrupolar power anisotropy in large scale structure.Comment: 23 pages; 10 figures; 3 tables; replaced with version published in JCAP (added discussion of scale-varying quadrupolar anisotropy

    Creating Statistically Anisotropic and Inhomogeneous Perturbations

    Get PDF
    In almost all structure formation models, primordial perturbations are created within a homogeneous and isotropic universe, like the one we observe. Because their ensemble averages inherit the symmetries of the spacetime in which they are seeded, cosmological perturbations then happen to be statistically isotropic and homogeneous. Certain anomalies in the cosmic microwave background on the other hand suggest that perturbations do not satisfy these statistical properties, thereby challenging perhaps our understanding of structure formation. In this article we relax this tension. We show that if the universe contains an appropriate triad of scalar fields with spatially constant but non-zero gradients, it is possible to generate statistically anisotropic and inhomogeneous primordial perturbations, even though the energy momentum tensor of the triad itself is invariant under translations and rotations.Comment: 20 pages, 1 figure. Uses RevTeX

    Cosmology of a Scalar Field Coupled to Matter and an Isotropy-Violating Maxwell Field

    Full text link
    Motivated by the couplings of the dilaton in four-dimensional effective actions, we investigate the cosmological consequences of a scalar field coupled both to matter and a Maxwell-type vector field. The vector field has a background isotropy-violating component. New anisotropic scaling solutions which can be responsible for the matter and dark energy dominated epochs are identified and explored. For a large parameter region the universe expands almost isotropically. Using that the CMB quadrupole is extremely sensitive to shear, we constrain the ratio of the matter coupling to the vector coupling to be less than 10^(-5). Moreover, we identify a large parameter region, corresponding to a strong vector coupling regime, yielding exciting and viable cosmologies close to the LCDM limit.Comment: Refs. added, some clarifications. Published in JHEP10(2012)06
    • …
    corecore