310 research outputs found
Ugly on the Inside: An Argument for a Narrow Interpretation of Employer Defenses to Appearance Discrimination
Mir-21-Sox2 Axis Delineates Glioblastoma Subtypes with Prognostic Impact.
UNLABELLED: Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21-Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21-Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21-Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes.
SIGNIFICANCE STATEMENT: Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not mechanism based and its prognostic value is limited. Here, we identify a new mechanism in GBM (the miR-21-Sox2 axis) that can classify ∼50% of patients into two subtypes with distinct molecular, radiological, and pathological characteristics. Importantly, this classification can predict patient survival better than the currently used parameters. Further, analysis of the miR-21-Sox2 relationship in mouse neural stem cells and in the mouse brain at different developmental stages indicates that miR-21 and Sox2 are predominantly expressed in mutually exclusive patterns, suggesting a role in normal neural development
A Compact Variable Stiffness Actuator for Agile Legged Locomotion
The legged robots with variable stiffness actuators (VSAs) can achieve energy-efficient and versatile locomotion. However, equipping legged robots with VSAs in real-world application is usually restricted by (i) the redundant mechanical structure design, (ii) limited stiffness variation range and speed, (iii) high energy consumption in stiffness modulation, and (iv) the lack of online stiffness control structure with high performance. In this paper, we present a novel Variable-Length Leaf-Spring Actuator (VLLSA) designed for legged robots that aims to address the aforementioned limitations. The design is based on leaf-spring mechanism and we improve the structural design to make the proposed VSA (i) compact and lightweight in mechanical structure, (ii) precise in theoretical modeling, and (iii) capable of modulating stiffness with wide range, fast speed, low energy consumption and high control performance. Hardware experiments including in-place and forward hopping validate advantages of the proposed VLLSA
Adjuvant Therapy with Oncolytic Adenovirus Delta-24-RGDOX After Intratumoral Adoptive T-cell Therapy Promotes Antigen Spread to Sustain Systemic Antitumor Immunity
Cancer cell heterogeneity and immunosuppressive tumor microenvironment (TME) pose a challenge in treating solid tumors with adoptive cell therapies targeting limited tumor-associated antigens (TAA), such as chimeric antigen receptor T-cell therapy. We hypothesize that oncolytic adenovirus Delta-24-RGDOX activates the TME and promote antigen spread to potentiate the abscopal effect of adoptive TAA-targeting T cells in localized intratumoral treatment. Herein, we used C57BL/6 mouse models with disseminated tumors derived from B16 melanoma cell lines to assess therapeutic effects and antitumor immunity. gp100-specific pmel-1 or ovalbumin (OVA)-specific OT-I T cells were injected into the first subcutaneous tumor, followed by three injections of Delta-24-RGDOX. We found TAA-targeting T cells injected into one subcutaneous tumor showed tumor tropism. Delta-24-RGDOX sustained the systemic tumor regression mediated by the T cells, leading to improved survival rate. Further analysis revealed that, in mice with disseminated B16-OVA tumors, Delta-24-RGDOX increased CD8+ leukocyte density within treated and untreated tumors. Importantly, Delta-24-RGDOX significantly reduced the immunosuppression of endogenous OVA-specific CTLs while increasing that of CD8+ leukocytes and, to a lesser extent, adoptive pmel-1 T cells. Consequently, Delta-24-RGDOX drastically increased the density of the OVA-specific CTLs in both tumors, and the combination synergistically enhanced the effect. Consistently, the splenocytes from the combination group showed a significantly stronger response against other TAAs (OVA and TRP2) than gp100, resulted in higher activity against tumor cells. Therefore, our data demonstrate that, as an adjuvant therapy followed TAA-targeting T cells in localized treatment, Delta-24-RGDOX activates TME and promotes antigen spread, leading to efficacious systemic antitumor immunity to overcome tumor relapse
Fundamentals of Entrepreneurship (ENT 300) : MustLihat photocopy & printing shop / Mohd Rafiq Safiuddin Safri … [et al.]
Our company name is MustLihat Photocopy Shop. The business of our company has been decided on the form of partnership. Each partner has contributes certain amount of capital as agreed in our agreement. Our main business activity is to offers services by photocopy, printing banner, and printing all sorts of file. Other than that, we also sell stationaries and snacks. All partners are encourage and entitled to participate in all business management. We have agreed that MOHD RAFIQ SAFIUDDIN BIN SAFRI as the General Manager and Administrative Manager,
JAMALY HAMSYAH BIN HAMDAN as the Marketing Manager, JOHN LANGGANG NJAU as the Operation
Manager, and CYRIL LEGGEW GUMIN as the Financial Manager. The selection of each position is based
on consensus among all partners and selected based on their skills and experience
Chimeric Oncolytic Adenovirus Evades Neutralizing Antibodies From Human Patients and Exhibits Enhanced Anti-Glioma Efficacy in Immunized Mice
Oncolytic viruses are a promising treatment for patients with high-grade gliomas, but neutralizing antibodies can limit their efficacy in patients with prior virus exposure or upon repeated virus injections. Data from a previous clinical trial using the oncolytic adenovirus Delta-24-RGD showed that generation of anti-viral neutralizing antibodies may affect the long-term survival of glioma patients. Past studies have examined the effects of neutralizing antibodies during systemic virus injections, but largely overlooked their impact during local virus injections into the brain. We found that immunoglobulins colocalized with viral proteins upon local oncolytic virotherapy of brain tumors, warranting a strategy to prevent virus neutralization and maximize oncolysis. Thus, we generated a chimeric virus, Delta-24-RGD-H43m, by replacing the capsid protein HVRs from the serotype 5-based Delta-24-RGD with those from the rare serotype 43. Delta-24-RGD-H43m evaded neutralizing anti-Ad5 antibodies and conferred a higher rate of long-term survival than Delta-24-RGD in glioma-bearing mice. Importantly, Delta-24-RGD-H43m activity was significantly more resistant to neutralizing antibodies present in sera of glioma patients treated with Delta-24-RGD during a phase 1 clinical trial. These findings provide a framework for a novel treatment of glioma patients that have developed immunity against Delta-24-RGD
Development of a Rabbit Human Glioblastoma Model for Testing of Endovascular Selective Intra-Arterial Infusion (ESIA) of Novel Stem Cell-Based Therapeutics
BACKGROUND: Endovascular selective intra-arterial (ESIA) infusion of cellular oncotherapeutics is a rapidly evolving strategy for treating glioblastoma. Evaluation of ESIA infusion requires a unique animal model. Our goal was to create a rabbit human GBM model to test IA infusions of cellular therapies and to test its usefulness by employing clinical-grade microcatheters and infusion methods to deliver mesenchymal stem cells loaded with an oncolytic adenovirus, Delta-24-RGD (MSC-D24).
METHODS: Rabbits were immunosuppressed with mycophenolate mofetil, dexamethasone, and tacrolimus. They underwent stereotactic xenoimplantation of human GBM cell lines (U87, MDA-GSC-17, and MDA-GSC-8-11) into the right frontal lobe. Tumor formation was confirmed on magnetic resonance imaging, histologic, and immunohistochemistry analysis. Selective microcatheter infusion of MSC-D24 was performed via the ipsilateral internal carotid artery to assess model utility and the efficacy and safety of this approach.
RESULTS: Twenty-five rabbits were implanted (18 with U87, 2 MDA-GSC-17, and 5 MDA-GSC-8-11). Tumors formed in 68% of rabbits (77.8% for U87, 50.0% for MDA-GSC-17, and 40.0% for MDA-GSC-8-11). On MRI, the tumors were hyperintense on T2-weighted image with variable enhancement (evidence of blood brain barrier breakdown). Histologically, tumors showed phenotypic traits of human GBM including varying levels of vascularity. ESIA infusion into the distal internal carotid artery of 2 ml of MSCs-D24 (107 cells) was safe in the model. Examination of post infusion specimens documented that MSCs-D24 homed to the implanted tumor at 24 hours.
CONCLUSIONS: The intracranial immunosuppressed rabbit human GBM model allows testing of ESIA infusion of novel therapeutics (eg, MSC-D24) in a clinically relevant fashion
Multiomics Analyses Reveal DARS1-AS1/YBX1-Controlled Posttranscriptional Circuits Promoting Glioblastoma Tumorigenesis/Radioresistance
The glioblastoma (GBM) stem cell-like cells (GSCs) are critical for tumorigenesis/therapeutic resistance of GBM. Mounting evidence supports tumor-promoting function of long noncoding RNAs (lncRNAs), but their role in GSCs remains poorly understood. By combining CRISPRi screen with orthogonal multiomics approaches, we identified a lncRNA DARS1-AS1-controlled posttranscriptional circuitry that promoted the malignant properties of GBM cells/GSCs. Depleting DARS1-AS1 inhibited the proliferation of GBM cells/GSCs and self-renewal of GSCs, prolonging survival in orthotopic GBM models. DARS1-AS1 depletion also impaired the homologous recombination (HR)-mediated double-strand break (DSB) repair and enhanced the radiosensitivity of GBM cells/GSCs. Mechanistically, DARS1-AS1 interacted with YBX1 to promote target mRNA binding and stabilization, forming a mixed transcriptional/posttranscriptional feed-forward loop to up-regulate expression of the key regulators of G1-S transition, including E2F1 and CCND1. DARS1-AS1/YBX1 also stabilized the mRNA of FOXM1, a master transcription factor regulating GSC self-renewal and DSB repair. Our findings suggest DARS1-AS1/YBX1 axis as a potential therapeutic target for sensitizing GBM to radiation/HR deficiency-targeted therapy
Comparison of pharmacological inhibitors of lysine-specific demethylase 1 in glioblastoma stem cells reveals inhibitor-specific efficacy profiles
IntroductionImproved therapies for glioblastoma (GBM) are desperately needed and require preclinical evaluation in models that capture tumor heterogeneity and intrinsic resistance seen in patients. Epigenetic alterations have been well documented in GBM and lysine-specific demethylase 1 (LSD1/KDM1A) is amongst the chromatin modifiers implicated in stem cell maintenance, growth and differentiation. Pharmacological inhibition of LSD1 is clinically relevant, with numerous compounds in various phases of preclinical and clinical development, but an evaluation and comparison of LSD1 inhibitors in patient-derived GBM models is lacking.MethodsTo assess concordance between knockdown of LSD1 and inhibition of LSD1 using a prototype inhibitor in GBM, we performed RNA-seq to identify genes and biological processes associated with inhibition. Efficacy of various LSD1 inhibitors was assessed in nine patient-derived glioblastoma stem cell (GSC) lines and an orthotopic xenograft mouse model.ResultsLSD1 inhibitors had cytotoxic and selective effects regardless of GSC radiosensitivity or molecular subtype. In vivo, LSD1 inhibition via GSK-LSD1 led to a delayed reduction in tumor burden; however, tumor regrowth occurred. Comparison of GBM lines by RNA-seq was used to identify genes that may predict resistance to LSD1 inhibitors. We identified five genes that correlate with resistance to LSD1 inhibition in treatment resistant GSCs, in GSK-LSD1 treated mice, and in GBM patients with low LSD1 expression.ConclusionCollectively, the growth inhibitory effects of LSD1 inhibition across a panel of GSC models and identification of genes that may predict resistance has potential to guide future combination therapies
- …
