11 research outputs found

    Photon-stimulated recombination of self-trapped holes with electrons in pre-irradiated solid Ar

    No full text
    Spatially separated stable charge centers – trapped electrons and self-trapped holes – are generated in Ar cryocrystals by a low-energy electron beam. A combination of the cathodoluminescence and photon-stimulated luminescence methods has been used to probe recombination reactions. Photon-stimulated vacuum ultraviolet intrinsic recombination luminescence from pre-irradiated solid Ar was detected for the first time. The 1.96 eV laser light has been demonstrated to release electrons from their traps that gives rise to the well-known M-band at 9.8 eV. Additional information on the photostability of charge centers at low temperatures has been obtained

    Stimulated by laser light exoelectron emission from solid Ar pre-irradiated by an electron beam

    No full text
    Spatially separated stable charge centers, self-trapped holes and trapped electrons, were generated in Ar cryocrystals by a low-energy electron beam. A combination of the cathodoluminescence (CL) and photon- stimulated exoelectron emission (PSEE) methods was used to monitor center formation and selected relaxation channel – exoelectron emission. It was found that photon-promoted electron current decreased exponentially under irradiation with the laser operating in the visible range. Influence of the laser parameters (power and wavelength) on the characteristic lifetime of exoelectron emission is discussed. Effective bleaching of the low-temperature peaks of thermally stimulated exoelectron emission by the laser light in a visible range was observed

    Relaxation channels and transfer of energy stored by pre-irradiated rare gas solids

    No full text
    The processes of energy relaxation in rare gas solids pre-irradiated with an electron beam are discussed. We studied the emission of exoelectrons and photons from RGS. Investigations were performed by a set of activation spectroscopy methods applied simultaneously to each sample. Photon-stimulated exoelectron emission from solid Ne was observed for the first time

    Thermoactivation spectroscopy of solid Ar doped with N₂

    No full text
    A new modification of low-temperature activation spectroscopy technique for real-time correlated study of relaxation processes in cryogenic solids was developed. This enabled us to measure simultaneously thermally stimulated exoelectron emission (TSEE) and spectrally resolved thermally stimulated luminescence (TSL) in the range from 200 to 1100 nm. This paper presents the results on TSL and TSEE from solid Ar doped with N₂ exposed to irradiation by low-energy electron beam (500 eV) during deposition. The TSEE and TSL yields were measured at the heating rate of 3.2 K/min. The emissions of molecular (A³Σu⁺ → X¹Σg⁺ transition) and atomic (²D → ⁴S transition) nitrogen in the TSL spectra and their temperature behavior were studied. Drastic changes in the intensity distribution of the molecular progression were observed with temperature rise. In low-temperature range «hot» vibrationally unrelaxed transitions were detected in contrast to «cold» vibrationally relaxed transitions observed in «high» temperature TSL. The mechanisms of the processes resulting in TSL in whole temperature range of Ar solid occurrence are suggested

    Anomalous low-temperature “post-desorption” from solid nitrogen

    No full text
    Anomalous low-temperature post-desorption (ALTpD) from the surface of nominally pure solid nitrogen pre-liminary irradiated by an electron beam was detected for the first time. The study was performed using a combi-nation of activation spectroscopy methods — thermally stimulated exoelectron emission (TSEE) and spectrally resolved thermally stimulated luminescence (TSL) — with detection of the ALTpD yield. Charge recombination reactions are considered to be the stimulating factor for the desorption from pre-irradiated α-phase solid nitrogen

    Comparative study of thermostimulated luminescence and electron emission of nitrogen nanoclusters and films

    No full text
    We have studied thermostimulated luminenscence and electron emission of nitrogen films and nanoclusters containing atomic nitrogen free radicals. Thermostimulated electron emission from N₂ nanoclusters was ob-served for the first time. Thermostimulated luminescence spectra obtained during N₂–He sample destruction are similar to those detected from N₂ films pre-irradiated by an electron beam. This similarity reveals common mechanisms of energy transfer and relaxation. The correlation of the luminescence intensity and the electron cur-rent in both systems points to the important role of ionic species in relaxation cascades. A sublimation of solid helium shells isolating nitrogen nanoclusters is a trigger for the initiation of thermostimulated luminescence and electron emission in these nitrogen–helium condensates
    corecore