326 research outputs found
The Effect of a Magnetic Field on the Acoustoelectric current in a Narrow Channel
The effect of a perpendicular magnetic field on the quantized current induced
by a surface acoustic wave in a quasi-1D channel is studied. The channel has
been produced experimentally in a GaAs heterostructure by shallow etching
techniques and by the application of a negative gate voltage to Schottky split
gates. Commensurability oscillations of the quantized current in this
constriction have been observed in the interval of current between quantized
plateaus. The results can be understood in terms of a moving quantum dot with
the electron in the dot tunneling into the adjacent two-dimensional region. The
goal is to explain qualitatively the mechanism for the steplike nature of the
acoustoelectric current as a function of gate voltage and the oscillations when
a magnetic field is applied. A transfer Hamiltonian formalism is employed.Comment: 5 pages, 2 figure
Spin-dependent Scattering by a Potential Barrier on a Nanotube
The electron spin effects on the surface of a nanotube have been considered
through the spin-orbit interaction (SOI), arising from the electron confinement
on the surface of the nanotube. This is of the same nature as the
Rashba-Bychkov SOI at a semiconductor heterojunction. We estimate the effect of
disorder within a potential barrier on the transmission probability. Using a
continuum model, we obtained analytic expressions for the spin-split energy
bands for electrons on the surface of nanotubes in the presence of SOI. First
we calculate analytically the scattering amplitudes from a potential barrier
located around the axis of the nanotube into spin-dependent states. The effect
of disorder on the scattering process is included phenomenologically and
induces a reduction in the transition probability. We analyzed the relative
role of SOI and disorder on the transmission probability which depends on the
angular and linear momentum of the incoming particle, and its spin orientation.
We demonstrated that in the presence of disorder perfect transmission may not
be achieved for finite barrier heights.Comment: 16 pages, 15 figure
Disentangling surface and bulk transport in topological-insulator - junctions
By combining -type and -type
topological insulators, vertically stacked - junctions can be formed,
allowing to position the Fermi level into the bulk band gap and also tune
between - and -type surface carriers. Here we use low-temperature
magnetotransport measurements to probe the surface and bulk transport modes in
a range of vertical heterostructures with varying
relative thicknesses of the top and bottom layers. With increasing thickness of
the layer we observe a change from - to -type
behavior via a specific thickness where the Hall signal is immeasurable.
Assuming that the the bulk and surface states contribute in parallel, we can
calculate and reproduce the dependence of the Hall and longitudinal components
of resistivity on the film thickness. This highlights the role played by the
bulk conduction channels which, importantly, cannot be probed using surface
sensitive spectroscopic techniques. Our calculations are then buttressed by a
semi-classical Boltzmann transport theory which rigorously shows the vanishing
of the Hall signal. Our results provide crucial experimental and theoretical
insights into the relative roles of the surface and bulk in the vertical
topological - junctions.Comment: 11 pages, 5 figure
Hidden dimers and the matrix maps: Fibonacci chains re-visited
The existence of cycles of the matrix maps in Fibonacci class of lattices is
well established. We show that such cycles are intimately connected with the
presence of interesting positional correlations among the constituent `atoms'
in a one dimensional quasiperiodic lattice. We particularly address the
transfer model of the classic golden mean Fibonacci chain where a six cycle of
the full matrix map exists at the centre of the spectrum [Kohmoto et al, Phys.
Rev. B 35, 1020 (1987)], and for which no simple physical picture has so far
been provided, to the best of our knowledge. In addition, we show that our
prescription leads to a determination of other energy values for a mixed model
of the Fibonacci chain, for which the full matrix map may have similar cyclic
behaviour. Apart from the standard transfer-model of a golden mean Fibonacci
chain, we address a variant of it and the silver mean lattice, where the
existence of four cycles of the matrix map is already known to exist. The
underlying positional correlations for all such cases are discussed in details.Comment: 14 pages, 2 figures. Submitted to Physical Review
Dephasing time of disordered two-dimensional electron gas in modulated magnetic fields
The dephasing time of disordered two-dimensional electron gas in a modulated
magnetic field is studied. It is shown that in the weak inhomogeneity limit,
the dephasing rate is proportional to the field amplitude, while in strong
inhomogeneity limit the dependence is quadratic. It is demonstrated that the
origin of the dependence of dephasing time on field amplitude lies in the
nature of corresponding single-particle motion. A semiclassical Monte Carlo
algorithm is developed to study the dephasing time, which is of qualitative
nature but efficient in uncovering the dependence of dephasing time on field
amplitude for arbitrarily complicated magnetic-field modulation. Computer
simulations support analytical results. The crossover from linear to quadratic
dependence is then generalized to the situation with magnetic field modulated
periodically in one direction with zero mean, and it is argued that this
crossover can be expected for a large class of modulated magnetic fields.Comment: 8 pages, 2 figure
Acoustoelectric effect in a finite-length ballistic quantum channel
The dc current induced by a coherent surface acoustic wave (SAW) of wave
vector q in a ballistic channel of length L is calculated. The current contains
two contributions, even and odd in q. The even current exists only in a
asymmetric channel, when the electron reflection coefficients r_1 and r_2 at
both channel ends are different. The direction of the even current does not
depend on the direction of the SAW propagation, but is reversed upon
interchanging r_1 and r_2. The direction of the odd current is correlated with
the direction of the SAW propagation, but is insensitive to the interchange of
r_1 and r_2. It is shown that both contributions to the current are non zero
only when the electron reflection coefficients at the channel ends are energy
dependent. The current exhibits geometric oscillations as function of qL. These
oscillations are the hallmark of the coherence of the SAW and are completely
washed out when the current is induced by a flux of non-coherent phonons. The
results are compared with those obtained previously by different methods and
under different assumptions.Comment: 7 pages, 2 figure
- …