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By combining n-type Bi2Te3 and p-type Sb2Te3 topological insulators, vertically stacked p-n
junctions can be formed, allowing to position the Fermi level into the bulk band gap and also
tune between n- and p-type surface carriers. Here we use low-temperature magnetotransport mea-
surements to probe the surface and bulk transport modes in a range of vertical Bi2Te3/Sb2Te3

heterostructures with varying relative thicknesses of the top and bottom layers. With increasing
thickness of the Sb2Te3 layer we observe a change from n- to p-type behavior via a specific thickness
where the Hall signal is immeasurable. Assuming that the the bulk and surface states contribute in
parallel, we can calculate and reproduce the dependence of the Hall and longitudinal components
of resistivity on the film thickness. This highlights the role played by the bulk conduction channels
which, importantly, cannot be probed using surface sensitive spectroscopic techniques. Our calcu-
lations are then buttressed by a semi-classical Boltzmann transport theory which rigorously shows
the vanishing of the Hall signal. Our results provide crucial experimental and theoretical insights
into the relative roles of the surface and bulk in the vertical topological p-n junctions.

PACS numbers: 73.20.-r, 73.25.+i, 73.50.-h12

I. INTRODUCTION13

Topological insulators (TIs) are bulk insulators with14

exotic ‘topological surface states’1 (TSS) which are ro-15

bust to backscattering from non-magnetic impurities, ex-16

hibit spin-momentum locking 2 and have a Dirac-like dis-17

persion 3–5. These unique characteristics present several18

opportunities for applications in spintronics, thermoelec-19

tricity, and quantum computation. However, a major20

drawback of ‘early generation’ TIs such as Bi1−xSbx
5

21

and Bi2Se3
2,3 is that the Fermi level EF intersects the22

conduction/valence bands, thus giving rise to finite con-23

ductivity in the bulk. This non-topological conduction24

channel conducts in parallel to the TSS and in turn sub-25

verts the overall topological nature. Thus, in order to cre-26

ate bona fide TIs, the Fermi level EF needs to be tuned27

within the bulk bandgap, and this has previously been28

achieved by means of electrical gating6–9, doping4,10? ,11,29

or, as recently reported, by creating p-n junctions from30

two different TI films13,14.31

In Ref. 14 a ‘vertical topological p-n junction’ was real-32

ized by growing an n-type Bi2Te3 layer capped by a layer33

of p-type Sb2Te3, and it was shown that varying the rela-34

tive layer thicknesses serves to tune EF without the use of35

an external field. Importantly, such bilayer systems are36

expected to be significantly less disordered than doped37

materials such as (Bi1−xSbx)2Te3 in which inhomogene-38

ity of the dopants is a constant problem15? . Further-39

more, and in sharp contrast to doped TIs, the intrinsic40

p and n character of the individual layers presents re-41

markable opportunities towards the observation of novel42

physics including Klein tunneling16,17, spin interference43

effects at the p-n interface18, and topological exciton con-44

densates19. However, currently there exists little under-45

standing of the bulk conduction in such topological p-n46

junctions, primarily because ARPES used in Ref. 14 is47

a surface-sensitive method. This is especially notewor-48

thy in light of the fact that the band structure varies49

along the depth of the TI p-n junction slab, in sharp50

contrast to the essentially constant band gap within the51

bulk of (Bi1−xSbx)2Te3-type compounds. Understanding52

and minimizing the bulk conduction channels in TI p-n53

junctions is crucial in order to realize their technological54

potential as well as to gain access to the exotic physics55

they can host.56

II. EXPERIMENT57

Bi2Te3/Sb2Te3-bilayers (BST) were grown on phos-58

phorous doped Si substrates using molecular beam epi-59

taxy (MBE). Details of the MBE sample preparation can60

be found in Ref. 14. In all the samples, the bottom61

Bi2Te3-layer had thickness tBiTe = 6 nm while the top62

Sb2Te3-layers had thicknesses tSbTe = 6.6 nm (BST6),63

7.5 nm (BST7), 15 nm (BST15), and 25 nm (BST25), re-64

spectively. The layers were patterned into Hall bars of65

width W = 200µm and length L = 1000µm using pho-66

toresist as a mask for ion milling, and Ti/Au contact pads67

were deposited for electrical contact. Low-T electrical68
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FIG. 1. (a) MR and (b+c) Rxy as a function of B for different
tSbTe. All curves are measured at 280 mK. The high field MR
is linear for thin samples and changes to parabolic for thicker
samples. Cusp-like deviations at low fields are due to WAL
corrections. The sign change of the slope in (b) indicates
transport by electrons for BST6 and by holes for BST15 and
BST25. No Hall slope is visible in (c) for 2 different pairs of
contacts of BST7. (d) The schematic shows the charge trans-
port channels in a longitudinal and transverse measurement
setup. Trajectories of TSS and bulk electrons are shown in
red and of bulk holes in green.

measurements were carried out using lock-in techniques69

in a He-3 cryostat with a base temperature of 280 mK and70

a 10 T superconducting magnet. Both longitudinal (Rxx)71

and transverse (Rxy) components of resistance were mea-72

sured.73

III. RESULTS74

Figure 1(a) shows the longitudinal magnetoresistance75

(MR) ≡ (Rxx(B) − Rxx(0))/Rxx(0) of the various sam-76

ples considered. We find that above ∼ 2 T the MR in77

BST6 and BST7 is manifestly linear whereas the MR in78

BST15 and BST25 appears to be neither purely linear nor79

quadratic. While there is experimental evidence suggest-80

ing an association between linear MR and linearly disper-81

sive media20–22, as well as a theoretical basis for this asso-82

ciation23, we note that disorder can also render giant lin-83

ear MR24,25 by admixing longitudinal and Hall voltages.84

In Fig. 1(b) we see that Rxy is linear in B and its slope85

changes sign from positive (BST6) to negative (BST1586

and BST25). This is simply a reflection of different87

charge carrier types of Bi2Te3 (n-type) and Sb2Te3 (p-88

type), where electrons (holes) dominate transport when89

Sb2Te3 is thin (thick). Intriguingly, Fig. 1(c) shows Rxy90

vs B measured in two different Hall bar devices of BST791

to be strongly non-linear and non-monotonic. Qualita-92

tively, it appears as if Rxy is picking up a large com-93

ponent of Rxx despite the Hall probes being aligned to94

each other with lithographic (µm-scale) precision. We95

FIG. 2. (a+b) Weak antilocalization peaks for 2 different
Sb2Te3-thicknesses and at 3 different temperatures. Fits to
the measurements, based on the HLN model, are shown in
straight red lines, while curves with α at 0.5 (green dashed
line) and 1 (blue dashed-dotted line) allow to estimate the
error. (c) lφ as a function of T for various tSbTe in a log-log
plot. All curves are proportional to ∝ T−0.5 (dashed line) but
shifted with respect to each other. (d) α as a function of T
for various tSbTe.

conjecture, therefore, that BST7 is very close to where96

the Hall coefficient RH precisely changes from positive97

to negative. Seemingly to the contrary, ARPES mea-98

surements in Ref. 14 reveal that EF intersects the Dirac99

point in samples with 15 nm < tSbTe < 25 nm, in which100

parameter regime Fig. 1(b) indicates a net excess of p-101

type carriers. The investigation of this discrepancy is the102

major focus of this manuscript.103

Figures 2(a+b) show the low-field MR where a pro-104

nounced ‘weak anti-localisation’ (WAL) cusp is visible at105

zero magnetic field (B). The WAL corrections are well-106

described by the model of Hikami, Larkin and Nagaoka107

(HLN)26
108

∆σ2D
xx ≡ σ2D

xx (B)− σ2D
xx (0)

= α
e2

2π2h̄

[
ln

(
h̄

4eBl2φ

)
− ψ

(
1

2
+

h̄

4eBl2φ

)]
.

(1)
Here σxx ≡ (L/W )Rxx/(R

2
xx + R2

xy) and the super-109

script 2D indicates that the equation is valid for a two-110

dimensional conducting sheet, α is a parameter = 0.5 for111

each 2D WAL channel, e is the electronic charge, h̄ is112

Planck’s constant divided by 2π, lφ is the phase coher-113

ence length, and ψ is the digamma function.114

Figure 2(c) shows the T -dependence of lφ for all sam-115

ples. We find that lφ ∝ T−p/2, where the exponent p = 1116

is in line with 2D Nyquist scattering27,28 due to electron-117
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electron scattering processes. The second fitting param-118

eter α is depicted in Fig. 2(d) and we find values consis-119

tent with α = 0.5 (error estimates on α can be found in120

Fig. 2(a) and a discussion in Appendix A). This is consis-121

tent with several previous reports on TI thin films9,29–31.122

IV. DISCUSSION123

A. 3-channel model124

Having ascertained that the transport characteristics125

of the Bi2Te3/Sb2Te3 heterostructures are consistent126

with conventional TI behaviour, we now proceed to un-127

derstand the Hall characteristics. It is well-known that128

the TIs Bi2Te3 and Sb2Te3 show bulk conduction in ad-129

dition to the TSS. Thus, we start with a simple picture130

of three independent conduction channels: bulk n- and131

p-type layers corresponding to the Bi2Te3 and Sb2Te3132

layers, respectively, and a TSS on the top surface. While133

in principle a TSS exists also at the interface with the134

substrate, it is expected that its contribution to the con-135

ductivity is largely diminished due to the strongly disor-136

dered TI-substrate interface31,32. Thus as a first approx-137

imation, we do not consider the bottom TSS.138

Our starting point is the expressions for σxx and RH139

in a multi-channel system33–35
140

σxx = e npµp − e nnµn ± e ntµt (2)

RH(tSbTe) ≡ 1

e · neff
=

npµ
2
p − nnµ

2
n ± nt(tSbTe)µ2

t

e(npµp + nnµn + nt(tSbTe)µt)2
.

(3)
Here neff is the effective carrier concentration, e is the141

charge of an electron and −e is the charge of a hole, the142

subscript n, p and t signify bulk electrons, bulk holes, and143

surface carriers, respectively, ni are carrier concentra-144

tions, and µi represent the mobility of the charge carriers.145

The ± indicates, respectively, negative (tSbTe < 20 nm)146

and positive charge carriers (tSbTe > 20 nm) in the TSS.147

The following literature values for the bulk layers are as-148

sumed: nBiTe = 8 × 1019 cm−3 and µn = 50 cm2V−1s−1
149

for Bi2Te3
? and nSbTe = 4.5 × 1019 cm−3 and µp =150

300 cm2V−1s−1 for Sb2Te3
12,28,36. In order to compare151

nBiTe and nSbTe to the TSS carrier concentration, we con-152

vert them to effective areal densities as nn ≡ nBiTe · tBiTe153

and np ≡ nSbTe · tSbTe. It can be shown that nt ∝ E2
B154

where EB is the difference between EF and Dirac point155

(see Eq. B3, Appendix B) and EB, in turn, can be re-156

trieved from ARPES measurements in Ref.14. µt is used157

as a fitting parameter.158

Figure 3(a) shows RH as predicted by the model us-159

ing the above parameters to be in good agreement with160

the measured values. However, for the same parame-161

ters we find that Rxx ≡ (L/W )σxx is significantly under-162

estimated especially for low tSbTe (Fig. 3(b)). A likely163

FIG. 3. (a+d) Hall slopes RH determined from the Hall mea-
surements in Fig. 1(b) (black square), and fitted using Eq. 3
(red lines). The bulk mobilities µn,p were kept constant in (a)
and reduced for low thicknesses in (d). (b+c) Comparison of
measured (black squares) and calculated total resistance (red
disks), and conductivity of the TSS (black open squares) and
of the bulk (red open disks), using fitting parameters from
(a). (e+f) Same as (b+c) but using fitting parameter from
(d). All variables are a function of tSbTe.

source of this discrepancy is that the bulk µi values are164

not applicable for the ultra-thin films. This is especially165

so considering the fact that a depletion zone will form166

at the p-n interface. Determining the exact profile of167

the charge carrier density at the interface is beyond the168

scope of this paper and instead, we demonstrate that an169

ad-hoc thickness-dependent reduction of µi of the bulk170

layers with all other parameters unchanged, can signifi-171

cantly improve the quality of the predictions. Figure 3(d)172

shows the result of a fit in which µp and µn are reduced to173

20% of their bulk value in BST6 and BST7, and to 95%174

of their bulk value in BST15 and BST25. Not only do we175

obtain excellent agreement with the RH data, the model176

is also able to accurately predict Rxx (Fig. 3(e)). The ob-177

tained value of µt = 281 ± 17 cm2V−1s−1 is well within178

the range of previous studies in ultra-thin TIs where the179

TSS dominate transport11.180

Figure 3(f) shows the important physical insight we ar-181

rive at on the basis of this simple model: the bulk contri-182

bution is drastically reduced in thin films (see Fig. 3(c)),183

with the TSS eventually dominating the overall conduc-184

tivity σtot (see Fig. 3(f)).185

To test this conclusion we measure samples with top-186

gate electrodes which enable the tuning of the Fermi level187

EF via a gate voltage VG. A variation of EF should188

lead to perceptible changes of the transport properties189
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FIG. 4. (a) Gate voltage dependence of the resistivity for
BST7 (black) and BST25 (red). (b) Schematic of the change
of band structure as tSbTe is increased.

of the TSS (see Fig. 4(b)) while transport through the190

bulk should be less affected due to screening. As can191

be seen in Fig. 4(a) this is indeed the case, with the re-192

sistance of the thin, TSS dominated sample much more193

dependent on VG than the thick, bulk dominated sam-194

ple. The resistance of the thin sample is maximized when195

VG = −12V , likely corresponding to the alignment of EF196

with the Dirac point. Thus, broadly speaking, despite197

the basic nature of the model, it captures the essential198

physics and provides a consistent explanation of the de-199

pendence of the longitudinal and Hall transport compo-200

nents. Furthermore, the results of our calculation are201

clearly consistent with the observation of ‘no’ Hall slope202

in BST7.203

B. Semi-classical theory204

Although our simplistic model offers useful physical205

insights, for a more microscopic understanding it is de-206

sirable that one is not dependent on ad-hoc assumptions207

and/or a large number of experimental parameters. In208

the following we present a semi-classical theory for calcu-209

lating magneto-conductivity tensors of surface and bulk210

charge carriers in a topological p-n junction using zeroth211

and first-order Boltzmann moment equations37. Assum-212

ing the p-n interface to be in the x− y plane, then under213

a parallel external electric field E = (Ex, Ey, 0) and a214

perpendicular magnetic field B = (0, 0, B), the total cur-215

rent per length in a p-n junction structure is given by216 ∫ LD

−LA

dz
[
j‖c(z) + j‖v(z)

]
+ j±s , where LD and LA are the217

thickness of the p region (donors) and n region (accep-218

tors), respectively. Here ji indicate the current densities219

with i = c, v or s for conduction band, valence band220

and surface, respectively. The superscript ‖ is included221

to emphasise that the current considered is parallel to222

the p-n interface as is experimentally the case. The bulk223

current densities are given by224

j‖c,v(z) =
2eγe,hm

∗
e,hτe,h(z)

τp(e,h)(z)
v‖c,v[uc,v(z)]

{[
µ
↔‖

c,v(B, z) ·E
]}
· v‖c,v[uc,v(z)]Dc,v[uc,v(z)] , (4)

where γe,h = −1 or +1 for electrons and holes, respec-225

tively, m∗e,h are effective masses of electrons and holes,226

τe,h(z) and τp(e,h)(z) are bulk energy- and momentum re-227

laxation times37, the velocity v
‖
c,v(k) = −γe,h h̄k‖/m

∗
e,h228

(with k the wavevector and k‖ the in-plane wavevector),229

uc,v(z) = (h̄ke,h
F )2/2m∗e,h and ke,h

F are Fermi energies and230

wave vectors in the bulk, µ‖
c,v are mobility tensors, and231

Dc,v[uc,v(z)] = (
√
uc,v(z)/4π2) (2m∗e,h/h̄

2)3/2 is the elec-232

tron and hole density-of-states per spin.233

Similarly, one obtains the surface current per length as234

j±s = ∓eτsh̄k
s
F

τspvF
v±s (us)

{[
µ
↔±

s (B) ·E
]}
· v±s (us) ρs(us) ,

(5)
where the ± denote when the Fermi level lies above and235

below the Dirac point, respectively, τs and τsp are surface236

energy- and momentum relaxation times, ks
F =

√
4πns237

where ns is the areal density of surface electrons, vF is the238

Fermi velocity of a Dirac cone, v±s (k‖) = ±(k‖/k‖) vF,239

us = h̄vFk
s
F is the Fermi energy of a Dirac cone, and240

ρs(us) = us/(2πh̄
2v2

F) is the surface density-of-states of a241

Dirac cone.242

The bulk mobility tensors µ
↔

c,v(B, z) are given by243

µ
↔‖

c,v(B, z) =
µ0(z)

1 + µ2
0(z)B2

[
1 µ0(z)B

−µ0(z)B 1

]
, (6)

where µ0(z) = eγe,hτp(e,h)(z)/m
∗
e,h. A derivation of the244

bulk mobility tensor can be found in Appendix D. The245

bulk conductivity tensor is then calculated as246

σ
↔‖

c,v(B) =

eγe,h

∫ LD

−LA

dz ne,h(z)

[
τe,h(z)

τp(e,h)(z)

]
µ
↔‖

c,v(B, z) . (7)

Likewise, the surface mobility tensor is247

µ
↔±
s (B) = ∓ µ1

1 + µ2
1B

2

[
1 ∓µ1B

±µ1B 1

]
, (8)

where µ1 = 4ε20ε
2
r h̄v

2
F/σie

3, εr is the host dielectric con-248

stant, and σi is the surface density of impurities. This249

corresponds to a surface conductivity tensor given by250
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σ
↔±

s (B) = eσs

(
τs
τsp

)
µ
↔±

s (B) . (9)

Therefore, the total conductivity tensor σ
↔

tot(B) =251

σ
↔‖

c(B) + σ
↔‖

v(B) + σ
↔±

s (B) is obtained as252

σ
↔

tot(B) = eµ
↔‖

v(B)NAAh

[
(LA −Wp) +

∫ Wp

0

dz exp

(
−βeµ̄hNA

2ε0εrDh
z2

)]
− eµ↔‖c(B)NDAe

×

[
(LD −Wn) +

∫ Wn

0

dz exp

(
−βeµ̄eND

2ε0εrDe
z2

)]
+ eµ
↔±

s (B)

(
α2

0

4πh̄2v2
F

)
(LA − L)

2
As , (10)

where α0 and L0 are constants to be determined exper-253

imentally, ND,A are doping concentrations, Wn and Wp254

are the thicknesses of the depletion zones for donors and255

acceptors in a p-n junction, µ̄e,h are µ0(z) evaluated at256

ne,h(z) = ND,A, De,h are diffusion coefficients, β = 4/3257

(β = 7/3) for longitudinal (Hall) conductivity. In addi-258

tion, the averaged mobilities µ
↔‖

c,v(B) are defined by their259

values of τp(e,h)(z) at ne,h(z) = ND,A, and three coeffi-260

cients are As = τs/τsp ≈ 3/4,261

Ae,h =
τe,h(z)

τp(e,h)(z)

∣∣∣∣
ne,h(z)=ND,A

(11)

=
1

6

(
Qc

ke,h
F

)2 [
2 ln

(
2ke,h

F

Qc

)
− 1

]

=
Q2

c

6(3π2ND,A)2/3

{
2 ln

[
2(3π2ND,A)1/3

Qc

]
− 1

}
,

where 1/Qc is the Thomas-Fermi screening length. More262

details on the derivation of the conductivity tensors can263

be found in Appendix E.264

From Eq. 10 one can see that there exists a critical265

value of LA = L∗ at which the total Hall conductivity266

becomes zero, which is determined from the following267

quadratic equation268

µ̄2
hNAAh

1 + µ̄2
hB

2

{
(L∗ −Wp) +

∫ Wp

0

dz exp

[
−
(

7eµ̄hNA

6ε0εrDh

)
z2

]}
− µ̄2

eNDAe

1 + µ̄2
eB

2
{(LD −Wn)

+

∫ Wn

0

dz exp

[
−
(

7eµ̄eND

6ε0εrDe

)
z2

]}
± µ2

1

1 + µ2
1B

2

(
α2

0

4πh̄2v2
F

)
(L∗ − L0)

2
As = 0 , (12)

where the sign + (−) corresponds to LA > L0 (LA < L0)269

for the contribution of the lower (upper) Dirac cone.270

We note that in arriving at the above equations we271

have not considered scattering between the TSS and bulk272

layers. Including these will modify energy-relaxation273

times for both bulk and surface states, although no ana-274

lytical expression for these can be obtained even at low275

T . We leave a numerical evaluation of the problem for276

a later manuscript. For the purposes of this manuscript,277

we stress that the inclusion of this coupling only serves278

to modify the three coefficients Ae, Ah, and As, and thus279

the obtained result is qualitatively unchanged. Impor-280

tantly, the physical content of Eq. 12 is essentially iden-281

tical to that in Eq. 3, but arrived at in a more rigorous282

fashion. This provides a very useful microscopic ground-283

ing to Eq. 3 whilst also providing additional confidence to284

the physical insights drawn from the simple three-channel285

model.286

V. CONCLUSION287

In conclusion, we have reported low-T magnetotrans-288

port measurements on vertical topological p-n junctions289

and understood the data within a three-channel model290

for the Hall resistance. It provides useful insights into291

the complex interplay of the bulk and TSS in the multi-292

layered TI, explains the sign change of RH with varying293

tSbTe, and delivers values for the mobility of the TSS of294

281 cm2V−1s−1. We then develop a Boltzmann trans-295
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port theory which provides a clear microscopic founda-296

tion for our model. Our work paves the way for the study297

of other complex TI heterostructures29,38,39, where bulk298

states and TSS of different carrier types coexist. In fu-299

ture, our method can be applied to improved topological300

p-n junctions in which a top and bottom TSS can form301

novel Dirac fermion excitonic states.302
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Appendix A: Error estimates for α311

Figure 2(a) compares the results when 1) α and lφ were312

both fitting variables (red line) or 2) when lφ alone was313

used as a fitting variable and α was kept constant. We314

find that the fit for α = 1 (blue dashed-dotted line) is of315

a significantly poorer quality, indicating clearly that the316

data is consistent with the existence of one WAL mode.317

This errors become significantly larger as T is increased318

(here not shown) and thus one must not over interpret319

the apparent increase in α with T in Fig. 2(d).320

Appendix B: TSS electron density321

The density of states in the dirac cone33 is given by322

g(k)dk/
2π

L

2

= 2πkdk/
2π

L

2

=
kdk

(2π/L)2
(B1)

The relation between the binding energy EB, i.e. the323

difference between the Fermi energy and the Dirac point,324

and the Fermi wave vector kF is325

EB = βkF = h̄vFkF (B2)

and can be retrieved from ARPES measurements in326

Ref. 14, carried out using samples from the same growth327

process and identical material parameters. For EB =328

215 meV, kF ≈ 0.1Å (see Fig. 4(h) in Ref. 14), thus329

β = EB

kF
= 3.44 · 10−29J m. From β, a Fermi velocity of330

3.26 · 105 m
s can be derived.331

The electron density of the TSS is332

nt = k2
F/4π =

E2
B

4πβ2
(B3)

Furthermore, the relation between EB and the Sb2Te3-333

thickness is linear (dEB/dtSbTe = 1.62 · 10−12 J/m, see334

Fig. 5) and335

nt =
(dEB/dtSbTe · tSbTe)2

4πβ2
(B4)

Appendix C: Derivation of RH and neff336

The force acting on charges in the TSS (index t), bulk-337

Sb2Te3 (p) and bulk-Bi2Te3 (n) originate from an elec-338

tric field ~E in y-direction and a magnetic field ~B in z-339

direction:340

−Fny = eEy + evnxBz

−Fty = eEy + evtxBz

Fpy = eEy − evpxBz

(C1)

Using v = µ
eF with µ the mobility, we obtain341

vny

µn
= Ey + µnExBz

vty

µt
= Ey + µtExBz

vpy

µp
= Ey − µpExBz

(C2)

Furthermore, no charge current is flowing in y-342

direction343

Jy = Jn + Jt + Jp

= ennvny + entvty + enpvpy = 0

=⇒ nnvny = −(ntvty + npvpy)

(C3)

Inserting the velocities in the previous equation gives344

nnµn(Ey + µnExBz)

= −(ntµt(Ey + µtExBz) + npµp(Ey − µpExBz))

=⇒ Ey(nnµn + ntµt + npµp)

= BzEx(−nnµ
2
n − ntµ

2
t + npµ

2
p)

(C4)

The charge current in x-direction is345

Jx = ennvnx + entvtx + enpvpx

= (nnµn + ntµt + npµp)eEx
(C5)

Ex can now be replaced, resulting in346

eEy(nnµn + ntµt + npµp)2

= BzJx(−nnµ
2
n − ntµ

2
t + npµ

2
p)

=⇒ RH =
BzJx

Ey
=
−nnµ

2
n − ntµ

2
t + npµ

2
p

e(nnµn + ntµt + npµp)2

(C6)
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FIG. 5. Relation between EB and tSbTe (from Ref. 14)

Both np and nt are depending on the thickness of the347

Sb2Te3-thickness, tSbTe, with348

np = nSbTe · tSbTe

nt(tSbTe) =
(dEB/dtSbTe · (tSbTe − t0))2

4πβ2

(C7)

where dEB/dtSbTe can be gained from Fig. 5.349

Thus RH(tSbTe) is a function of the Sb2Te3-thickness350

of the form351

RH(tSbTe) =
−nn(tSbTe)µ2

n ± nt(tSbTe)µ2
t + npµ

2
p

e(nn(tSbTe)µn + nt(tSbTe)µt + npµp)2

=
−nSbTetSbTeµ

2
n ±

(dEB/dtSbTe·(tSbTe−t0))2

4πβ2 µ2
t + npµ

2
p

e(nSbTetSbTeµn + (dEB/dtSbTe·(tSbTe−t0))2

4πβ2 µt + npµp)2

(C8)

where the ‘+’ sign has to be used when tSbTe > 20 nm352

and the ‘-’ sign for tSbTe < 20 nm.353

Because of the entity RH = −1/(e ·neff), the ‘effective’354

2-dimensional charge density is given by355

neff = − (nn(tSbTe)µn + nt(tSbTe)µt + npµp)2

−nn(tSbTe)µ2
n ± nt(tSbTe)µ2

t + npµ2
p

(C9)

Appendix D: Bulk and surface mobility tensors356

By using the force-balance equation 37,40,41 for bulk357

electrons358

∂vd(t|z)
∂t

= −τ↔−1
pe (z) · vd(t|z)

− e
↔
M−1

c (z) · [E(t) + vd(t|z)×B(t)] = 0 , (D1)

as well as the diagonal approximation for the inverse359

momentum-relaxation-time tensor τ
↔−1
pe ≈ (1/τj) δij , we360

get the following group of linear inhomogeneous equa-361

tions for vd = {v1, v2, v3}362

[1 + qτ1 (r12B3 − r13B2)] v1 + qτ1 (r13B1 − r11B3) v2

+qτ1 (r11B2 − r12B1) v3 = qτ1 (r11E1 + r12E2 + r13E3) ,

qτ2 (r22B3 − r23B2) v1 + [1 + qτ2 (r23B1 − r21B3)] v2

+qτ2 (r21B2 − r22B1) v3 = qτ2 (r21E1 + r22E2 + r23E3) ,

qτ3 (r32B3 − r33B2) v1 + qτ3 (r33B1 − r31B3) v2+

[1 + qτ3 (r31B2 − r32B1)] v3 = qτ3 (r31E1 + r32E2 + r33E3) ,
(D2)

where the statistically-averaged inverse effective-mass363

tensor for the conduction band is364

[ ↔
M−1

c (z)
]
ij
≡ {rij} ≡

2

ne(z)V
∑
k

[
1

h̄2

∂2εc(k)

∂ki∂kj

]
f0[εc(k), T ; uc(z)] , (D3)

i, j = x, y, z, B = {B1, B2, B3}, E = {E1, E2, E3},365

and q = −e. By defining the coefficient matrix C
↔

for the366

above linear equations, i.e.,367

C
↔

=

 1 + qτ1(r12B3 − r13B2) qτ1(r13B1 − r11B3) qτ1(r11B2 − r12B1)
qτ2(r22B3 − r23B2) 1 + qτ2(r23B1 − r21B3) qτ2(r21B2 − r22B1)
qτ3(r32B3 − r33B2) qτ3(r33B1 − r31B3) 1 + qτ3(r31B2 − r32B1)

 , (D4)

as well as the source vector s, given by368

s =

 qτ1(r11E1 + r12E2 + r13E3)
qτ2(r21E1 + r22E2 + r23E3)
qτ3(r31E1 + r32E2 + r33E3)

 , (D5)

we can reduce the linear equations to a matrix equation369

C
↔
·vd = s with a formal solution vd = C

↔−1 ·s. Explicitly,370

we find the solution vd = {v1, v2, v3} for j = 1, 2, 3 as371

vj =
Det{

↔
∆j}

Det{C
↔
}
, (D6)

where Det{· · · } means taking the determinant,372
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↔
∆1 =

 qτ1(r11E1 + r12E2 + r13E3) qτ1(r13B1 − r11B3) qτ1(r11B2 − r12B1)
qτ2(r21E1 + r22E2 + r23E3) 1 + qτ2(r23B1 − r21B3) qτ2(r21B2 − r22B1)
qτ3(r31E1 + r32E2 + r33E3) qτ3(r33B1 − r31B3) 1 + qτ3(r31B2 − r32B1)

 ,

↔
∆2 =

 1 + qτ1(r12B3 − r13B2) qτ1(r11E1 + r12E2 + r13E3) qτ1(r11B2 − r12B1)
qτ2(r22B3 − r23B2) qτ2(r21E1 + r22E2 + r23E3) qτ2(r21B2 − r22B1)
qτ3(r32B3 − r33B2) qτ3(r31E1 + r32E2 + r33E3) 1 + qτ3(r31B2 − r32B1)

 , (D7)

↔
∆3 =

 1 + qτ1(r12B3 − r13B2) qτ1(r13B1 − r11B3) qτ1(r11E1 + r12E2 + r13E3)
qτ2(r22B3 − r23B2) 1 + qτ2(r23B1 − r21B3) qτ2(r21E1 + r22E2 + r23E3)
qτ3(r32B3 − r33B2) qτ3(r33B1 − r31B3) qτ3(r31E1 + r32E2 + r33E3)

 .

By assuming rij = 0 for i 6= j, rjj = 1/m∗j and intro-373

ducing the notation µj = qτj/m
∗
j , we find374

C
↔

=

 1 −µ1B3 µ1B2

µ2B3 1 −µ2B1

−µ3B2 µ3B1 1

 ,

↔
∆1 =

 µ1E1 −µ1B3 µ1B2

µ2E2 1 −µ2B1

µ3E3 µ3B1 1

 ,

↔
∆2 =

 1 µ1E1 µ1B2

µ2B3 µ2E2 −µ2B1

−µ3B2 µ3E3 1

 ,

↔
∆3 =

 1 −µ1B3 µ1E1

µ2B3 1 µ2E2

−µ3B2 µ3B1 µ3E3

 ,

(D8)

and375

Det{C
↔
} =1 + (B2

1µ2µ3 +B2
2µ3µ1 +B2

3µ1µ2) ,

Det{
↔
∆1} =µ1E1 + µ1(B3E2µ2 −B2E3µ3)

+ µ1µ2µ3B1(E ·B) ,

Det{
↔
∆2} =µ2E2 + µ2(B1E3µ3 −B3E1µ1)

+ µ1µ2µ3B2(E ·B) ,

Det{
↔
∆3} =µ3E3 + µ3(B2E1µ1 −B1E2µ2)

+ µ1µ2µ3B3(E ·B) .

(D9)

376

If we further assume m∗1 = m∗2 = m∗3 = m∗e and τ1 =377

τ2 = τ3 = τpe, we obtainDet{C
↔
} = 1+µ2

0B
2, Det{

↔
∆1} =378

−µ0E1 + µ2
0(B3E2 − B2E3) − µ3

0B1(E ·B), Det{
↔
∆2} =379

−µ0E2+µ2
0(B1E3−B3E1)−µ3

0B2(E·B), and Det{
↔
∆3} =380

−µ0E3 + µ2
0(B2E1 − B1E2) − µ3

0B3(E · B), where µ0 =381

eτpe/m
∗
e. As a result, the mobility tensor µ

↔
c(B), which382

is defined through vd = µ
↔
c(B) ·E, can be written as383

µ
↔
c(B) = − µ0

1 + µ2
0B

2

 1 + µ2
0B

2
1 −µ0B3 + µ2

0B1B2 µ0B2 + µ2
0B1B3

µ0B3 + µ2
0B2B1 1 + µ2

0B
2
2 −µ0B1 + µ2

0B2B3

−µ0B2 + µ2
0B3B1 µ0B1 + µ2

0B3B2 1 + µ2
0B

2
3

 , (D10)

where B2 = B2
1 +B2

2 +B2
3 . By taking B = {0, 0, B}, we384

find from Eq. (D10) that385

µ
↔
c(B) = − µ0

1 + µ2
0B

2

 1 −µ0B 0
µ0B 1 0

0 0 1 + µ2
0B

2

 .

(D11)

386

For the surface case, E3 = 0, v3 = 0 and
↔
M−1

s , τ
↔−1
sp387

and µ
↔
s(B) for the E−s (k‖) (lower-cone) state all reduce388

to 2× 2 tensors. This gives rise to389

µ
↔
s(B) =

µ1

1 + µ2
1B

2

[
1 µ1B

−µ1B 1

]
, (D12)

where µ1 = eτspvF /(h̄k
s
F ), ksF =

√
4πσs and σs is the390

areal density of surface electrons.391

Appendix E: Bulk and surface conductivity tensors392

Under a parallel external electric field E = (Ex, Ey, 0)393

and a perpendicular magnetic field B = (0, 0, B), the to-394

tal parallel current per length in a p-n junction structure395

is given by

∫ LD

−LA

dz
[
j‖c(z) + j‖v(z)

]
+ j±s , where LD and396

LA are the distribution ranges for donors and acceptors,397

respectively. Here, by using the second-order Boltzmann398

moment equation 42, the bulk current densities are found399

to be400
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j‖c,v(z) =
2eγe,hm

∗
e,hτe,h(z)

τp(e,h)(z)
v‖c,v[uc,v(z)]

{[
µ
↔‖
c,v(B, z) ·E

]}
· v‖c,v[uc,v(z)]Dc,v[uc,v(z)] , (E1)

where Dc,v[uc,v(z)] = (
√
uc,v(z)/4π

2) (2m∗e,h/h̄
2)3/2 is401

the electron and hole density-of-states per spin, uc,v(z) =402

(h̄ke,hF )2/2m∗e,h and ke,hF are Fermi energies and wave vec-403

tors in a bulk, m∗e,h are effective masses of electrons and404

holes, τe,h(z) and τp(e,h)(z) are bulk energy- and momen-405

tum relaxation times, 37,40,41 v
‖
c,v(k) = −γe,h h̄k‖/m

∗
e,h,406

and γe,h = −1 (electrons) and +1 (holes), respectively.407

Similarly, the surface current per length is 42
408

j±s = ∓eτsh̄k
s
F

τspvF
v±s (us)

{[
µ
↔±
s (B) ·E

]}
· v±s (us) ρs(us) ,

(E2)
where ρs(us) = us/(2πh̄

2v2
F ) and us = h̄vF k

s
F are the409

surface density-of-states and Fermi energy, ksF =
√

4πσs,410

vF is the Fermi velocity of a Dirac cone, τs and τsp are411

surface energy- and momentum relaxation times, 37,40,41
412

and v±s (k‖) = ±(k‖/k‖) vF .
413

From Eq. (E1), we find the bulk conductivity tensor as414

σ
↔‖
c,v(B) = eγe,h

∫ LD

−LA

dz ne,h(z)

[
τe,h(z)

τp(e,h)(z)

]
µ
↔‖
c,v(B, z) .

(E3)

On the other hand, from Eq. (E2) we get the surface415

conductivity tensor, given by416

σ
↔±
s (B) = eσs

(
τs
τsp

)
µ
↔±
s (B) . (E4)

Therefore, the total conductivity tensor σ
↔
tot(B) =417

σ
↔‖
c(B) + σ

↔‖
v(B) + σ

↔±
s (B) can be obtained from418

σ
↔
tot(B) = eµ

↔‖
v(B)NAAh

[
(LA −Wp) +

∫ Wp

0

dz exp

(
−βeµ̄hNA

2ε0εrDh
z2

)]

− eµ↔‖c(B)NDAe

[
(LD −Wn) +

∫ Wn

0

dz exp

(
−βeµ̄eND

2ε0εrDe
z2

)]
+ eµ
↔±
s (B)

(
α2

0

4πh̄2v2
F

)
(LA − L0)

2
As , (E5)

where α0 and L0 are constants to be determined exper-419

imentally, ND,A are doping concentrations, Wn and Wp420

are depletion ranges for donors and acceptors in a p-n421

junction, µ̄e,h are µ0(z) evaluated at ne,h(z) = ND,A,422

De,h are diffusion coefficients, and β = 4/3 (β = 7/3)423

for longitudinal (Hall) conductivity. In addition, the av-424

eraged mobilities µ
↔‖
c,v(B) are defined by their values of425

τp(e,h)(z) at ne,h(z) = ND,A, and three introduced coef-426

ficients are As = τs/τsp ≈ 3/4,427

Ae,h =
τe,h(z)

τp(e,h)(z)

∣∣∣∣
ne,h(z)=ND,A

=
1

6

(
Qc

ke,hF

)2 [
2 ln

(
2ke,hF
Qc

)
− 1

]

=
Q2
c

6(3π2ND,A)2/3

{
2 ln

[
2(3π2ND,A)1/3

Qc

]
− 1

}
, (E6)

where 1/Qc is the Thomas-Fermi screening length.
428

In addition, the bulk energy-relaxation times τe,h(z)429

are calculated as 37,40,41
430

1

τe,h(z)
=

[
2ni

ne,h(z)πh̄Q2
c

](
e2

ε0εr

)2

×∫ ke,hF (z)

0

dkDc,v(εc,vk )

(
4k2

4k2 +Q2
c

)
=

[
nim

∗
e,h

8ne,h(z)π3h̄3Q2
c

](
e2

ε0εr

)2

×{
[2ke,hF (z)]2 −Q2

c ln

(
[2ke,hF (z)]2 +Q2

c

Q2
c

)}
, (E7)

and the surface energy-relaxation time τs is found to431

be 37,40,41
432

1

τs
=

2σi

π2σsh̄
2vF

(
e2

2ε0εr

)2

×∫ π

0

dφ

∫ ksF

0

k2
‖ dk‖

(qc + 2k‖| cosφ|)2
, (E8)

where ni and σi are the impurity concentration and sur-433
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face density, respectively.
434

Finally, the bulk chemical potentials for electrons435

[uc(z)] and holes [uv(z)] are calculated as436

[uc,v(z)]
3/2

= 3π2

(
h2

2m∗e,h

)3/2

ne,h(z) , (E9)

and the carrier density functions are437

ne,h(z) = ND,A×

exp

{
−γe,h

(
µ̄e,h
De,h

)[
Φ(z) + γe,h(Ee,hF /e)

]}
. (E10)

Here, the expression for the introduced potential function438

Φ(z) is given by439

Φ(z) =
−EhF /e , z < −Wp

−EhF /e+ (eNA/2ε0εr) (z +Wp)
2 , −Wp < z < 0

EeF /e− (eND/2ε0εr) (Wn − z)2 , 0 < z < Wn

EeF /e , z > Wn

,

(E11)

and EeF (EhF ) is the Fermi energy of electrons (holes) at440

zero temperature and defined far away from the depletion441

region.442
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