16 research outputs found

    Sediment Organic Carbon Sequestration of Balkhash Lake in Central Asia

    No full text
    As an important part of the global carbon pool, lake carbon is of great significance in the global carbon cycle. Based on a study of the sedimentary proxies of Balkhash Lake, Central Asia’s largest lake, changes in the organic carbon sequestration in the lake sediments and their possible influence over the past 150 years were studied. The results suggested that the organic carbon in the sediments of Lake Balkhash comes mainly from aquatic plants. The organic carbon burial rate fluctuated from 8.16 to 30.04 g·m−2·a−1 and the minimum appeared at the top of the core. The organic carbon burial rate continues to decline as it has over the past 150 years. Global warming, higher hydrodynamic force, and low terrestrial input have not been conducive to the improvement of organic carbon sequestration in Balkhash Lake; the construction of a large reservoir had a greater impact on the sedimentary proxy of total organic carbon content, which could lead to a large deviation for environmental reconstruction. This is the first study to assess the sediment organic carbon sequestration using the modern sediments of Central Asia’s largest lake, which is of great scientific significance. The results contribute to an understanding of organic carbon sequestration in Central Asia and may provide a scientific basis for carbon balance assessment in regional and global scales

    Insights into Variations and Potential Long-Range Transport of Atmospheric Aerosols from the Aral Sea Basin in Central Asia

    No full text
    The dramatic shrinkage of the Aral Sea in the past decades has inevitably led to an environmental calamity. Existing knowledge on the variations and potential transport of atmospheric aerosols from the Aral Sea Basin (ASB) is limited. To bridge this knowledge gap, this study tried to identify the variations and long-range transport of atmospheric aerosols from the ASB in recent years. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data were used to gain new insight into the types, variation and long-range transport of atmospheric aerosols from the ASB. The results showed five types of tropospheric aerosols and one type of stratospheric aerosol were observed over the ASB. Polluted dust and dust were the dominant subtypes through the year. Sulfate/other was the only stratospheric aerosol detected. The occurrence frequency of aerosols over the ASB showed obvious seasonal variation. Maximum occurrence frequency of dust appeared in spring (MAM) and that of polluted dust peaked in summer (JJA). The monthly occurrence frequency of dust and polluted dust exhibited unimodal distribution. Polluted dust and dust were distributed over wide ranges from 1 km to 5 km vertically. The multi-year average thickness of polluted dust and dust layers was around 1.3 km. Their potential long-range transport in different directions mainly impacts Uzbekistan, Turkmenistan, Kazakhstan and eastern Iran, and may reach as far as the Caucasus region, part of China, Mongolia and Russia. Combining aerosol lidar, atmospheric climate models and geochemical methods is strongly suggested to gain clarity on the variations and long-range transport of atmospheric aerosols from the Aral Sea Basin

    Physical and Chemical Characterization of Dust Deposited in the Turan Lowland (Central Asia)

    No full text
    The desiccation of the Aral Sea ranks among the largest man-made ecological catastrophes and has become a global symbol for the overexploitation of limited resources and the environmental and socio-economic consequences caused thereby. Formerly the fourth largest inland lake, large parts of the Aral Sea have been transformed into a salty desert – the Aralkum. The exposed lake bed sediments are subject to wind erosion, resulting in white sand and dust storms which have been tracked over several hundred kilometres using remote sensing images. Dust deposition data, on the other hand, requires excessive field work over prolonged periods of time and thus is scarce. But this kind of ground-based monitoring provides valuable insights into the physical and chemical composition of the transported material. The dust transported from the Aralkum contains, among other things, salts, heavy metals and agrochemicals deposited in the Aral Sea over decades. It can contribute to soil salinization, damage crops and technical infrastructure and impair the human health in the region surrounding the Aralkum, making the analysis of the aeolian dust deposition highly relevant. In the study presented here passive dust deposition data from 23 meteorological stations in the Turan lowland have been collected between 2003 and 2012 and analyzed for their grain size, mineralogical, and chemical characterization in order to identify the influence the newly formed Aralkum has on the Central Asian dust dynamic

    Spatial and Vertical Variations and Heavy Metal Enrichments in Irrigated Soils of the Syr Darya River Watershed, Aral Sea Basin, Kazakhstan

    No full text
    In the Syr Darya River watershed, 225 samples from three different layers in 75 soil profiles were collected from irrigated areas in three different spatial regions (I: n = 29; II: n = 17; III: n = 29), and the spatial and vertical variation characteristics of potentially toxic elements (Cd, Co, Cu, Ni, and Zn) and a metallic element (Mn) were studied. The human health risks and enrichment factors were also evaluated in the Syr Darya River watershed of the Aral Sea Basin in Kazakhstan. There were significant differences in the contents of heavy metals in the different soil layers in the different sampling regions. Based on element variation similarity revealed by hierarchical cluster analysis, the elemental groupings were consistent in the different layers only in region I. For regions II and III, the clustered elemental groups were the same between surface layer A and B, but differed from those in the deep layer C. In sampling region I, the heavy metals in surface soils were significantly correlated with the ones in deep layers, reflecting that they were mainly affected by the elemental composition of parent materials. In region II, the significant correlations only existed for Cu, Mn, and Zn between the surface and deep layers. The similar phenomenon with significant correlation was also observed for heavy metals in sampling region III, except for Cd. Finally, enrichment factor was used to study the mobilization and enrichment of potentially toxic elements. The enrichment factors of Zn, Cu, and Cd in surface layer A that were greater than 1.5 accounted for 1.16%, 6.79%, and 24.36% of sampling region I, respectively. In sampling region II, the enrichment factors of Zn, Cu, Cd, and Co that were greater than 1.5 accounted for 0.03%, 4.76%, 0.54%, and 9.03% of the total area, respectively. In sampling region III, only the enrichment factors of Zn, Cu, and Cd that exceeded 1.5 accounted for 0.24%, 4.90%, and 6.89% of the total area, respectively. Although the contents of the heavy metals were not harmful to human health, the effects of human activities on the heavy metals in the irrigated soils revealed by enrichment factors have been shown in this study area

    Organic Carbon Burial in the Aral Sea of Central Asia

    No full text
    The burial of organic carbon in lake sediments plays an important role in the terrestrial carbon cycle. Clarifying the current status of carbon burial in the lakes of Central Asia is of great significance for the application of carbon balance assessments. With the analysis of the total organic carbon and nitrogen and the carbon isotope and organic carbon burial rate in the core sediment of the North Aral Sea, the status and influencing factors of organic carbon burial over the past 70 years can be revealed. The results showed that the main source of organic carbon was predominantly from lacustrine aquatic plants. However, the contribution of terrigenous organic carbon increased from the 1950s to the 1960s. The burial rate of organic carbon in North Aral Sea sediments was consistent with the overall change in the regional temperature. The burial rate of organic carbon showed an upward trend as a whole with an average of 28.78 g·m−2·a−1. Since 2010, the burial rate of organic carbon has stood at the highest level in nearly 70 years, with an average of 55.66 g·m−2·a−1. The protection of a lake by human beings can not only significantly improve the lake’s aquatic ecosystem but also help to increase the burial rate of the lake’s organic carbon

    Human-Induced Enrichment of Potentially Toxic Elements in a Sediment Core of Lake Balkhash, the Largest Lake in Central Asia

    No full text
    Over the past century, the impacts of human activities on the natural environment have continued to increase. Historic evolution of the environment under anthropogenic influences is an important reference for sustainable social development. Based on the geochemical analyses of a short sediment core of 49 cm from Lake Balkhash, the largest lake in Central Asia, potential factors historically influencing geochemical variation were revealed, and influences of human activity on regional environmental change were reconstructed over the past 150 years. The results showed that the dominant factor inducing changes in potentially toxic elements (V, Cr, Co, Ni, Zn, Cu, Cd, and Pb) is the physical weathering of the terrestrial materials. The variation in Ca content was influenced by the formation of authigenic carbonate. Since 1930, potentially toxic elements (Cr, Co, Ni, Zn, Cu, Cd, and Pb) in the lake sediments have obviously been affected by human activities, but the impact of human activities has not exceeded that of natural terrestrial weathering. In particular, the enrichment factors (EFs) for Cd and Pb reached 1.5. The average ecological risks of Cd were higher than the criterion of 30, suggesting a moderate risk to the local ecosystem in recent years. Total risk indices indicated moderate potential ecological risk for the lake ecology. The results will provide support for the environmental protection and better management practices of the Lake Balkhash watershed

    Projected Rainfall Erosivity Over Central Asia Based on CMIP5 Climate Models

    No full text
    Climate change-induced precipitation variability is the leading cause of rainfall erosivity that leads to excessive soil losses in most countries of the world. In this paper, four global climate models (GCMs) were used to characterize the spatiotemporal prediction of rainfall erosivity and assess the effect of variations of rainfall erosivity in Central Asia. The GCMs (BCCCSM1-1, IPSLCM5BLR, MIROC5, and MPIESMLR) were statistically downscaled using the delta method under Representative Concentration Pathways (RCPs) 2.6 and 8.5 for two time periods: “Near” and “Far” future (2030s and 2070s). These GCMs data were used to estimate rainfall erosivity and its projected changes over Central Asia. WorldClim data was used as the present baseline precipitation scenario for the study area. The rainfall erosivity (R) factor of the Revised Universal Soil Loss Equation (RUSLE) was used to determine rainfall erosivity. The results show an increase in the future periods of the annual rainfall erosivity compared to the baseline. For all GCMs, with an average change in rainfall erosivity of about 5.6% (424.49 MJ mm ha−1 h−1 year−1) in 2030s and 9.6% (440.57 MJ mm ha−1 h−1 year−1) in 2070s as compared to the baseline of 402 MJ mm ha−1 h−1 year−1. The magnitude of the change varies with the GCMs, with the largest change being 26.6% (508.85 MJ mm ha−1 h−1 year−1), occurring in the MIROC-5 RCP8.5 scenario in the 2070s. Although annual rainfall erosivity shows a steady increase, IPSLCM5ALR (both RCPs and periods) shows a decrease in the average erosivity. Higher rainfall amounts were the prime causes of increasing spatial-temporal rainfall erosivity

    The First Inventory of Rock Glaciers in the Zhetysu Alatau: The Aksu and Lepsy River Basins

    No full text
    While rock glaciers (RGs) are widespread in the Zhetysu Alatau mountain range of Tien Shan (Kazakhstan), they have not yet been systematically investigated. In this study, we present the first rock glacier inventory of this region containing 256 rock glaciers with quantitative information about their locations, geomorphic parameters, and downslope velocities, as established using a method that combines SAR interferometry and optical images from Google Earth. Our inventory shows that most of the RGs are talus-derived (61%). The maximum downslope velocity of the active rock glaciers (ARGs) was 252 mm yr−1. The average lower height of rock glaciers in this part of the Zhetysu Alatau was 3036 m above sea level (ASL). The largest area of rock glaciers was located between 2800 and 3400 m ASL and covered almost 86% of the total area. Most rock glaciers had a northern (northern, northeastern, and northwestern) orientation, which indicated the important role of solar insolation in their formation and preservation

    Accelerated Glacier Area Loss in the Zhetysu (Dzhungar) Alatau Range (Tien Shan) for the Period of 1956–2016

    No full text
    An updated glacier inventory is important for understanding the current glacier dynamics in the conditions of actual accelerating glacier retreat observed around the world. Here, we present a detailed analysis of the glaciation areas of the Zhetysu Alatau Range (Tien Shan) for 1956–2016 using well-established semiautomatic methods based on the band ratios. The total glacier area decreased by 49 ± 2.8% or by 399 ± 11.2 km2 from 813.6 ± 22.8 km2 to 414.6 ± 11.6 km2 during 1956–2016, while the number of glaciers increased from 985 to 813. Similar rates of area change characterized the periods 1956–2001, 2001–2012, 2012–2016, and 2001–2016: −296.2 ± 8.3 (−0.8% a−1), −63.7± 1.8 (−1.1% a−1), −39.1 ±1.1 (−2.2% a−1) and −102.8 ± 2.9 (−1.3% a−1) km2, respectively. The mean glacier size decreased from 0.57 km2 in 2001 to 0.51 km2 in 2016. Most glaciation areas of the Zhetysu Alatau faced north (north, northwest, and northeast), covered 390.35 ± 11 km2, and were located in altitudes between 3000 and 4000 m.a.s.l. With shrinkage rates of about −0.8% and −1.3% a−1 for the periods of 1956–2001 and 2001–2016, our results show that study area has the highest shrinkage rate compared to other glacierized areas of Central Asian mountains, including Altai, Pamir, and even the inner ranges of Tien Shan. It was found that a significant increase in temperature (0.12 °C/10 years) plays a main role in the state of glaciers
    corecore