181 research outputs found

    Exploring the Microbial Community of Traditional Sourdoughs to Select Yeasts and Lactic Acid Bacteria

    Get PDF
    Sourdoughs represent an awesome example of ecosystem in which yeasts and lactic acid bacteria (LAB) interact with each other, defining the characteristics of the final product in terms of composition, texture, taste and flavor. Therefore, the identification of dominant yeasts and LAB involved in the fermentation process can lead to the selection of starters with suitable fermentation aptitude and capable of producing desired aromas and/or aromatic precursors. In this work, two sourdoughs samples (A and B) for Panettone production were collected from an artisan bakery. Yeasts and bacteria were isolated at different fermentation steps on selective agar media. A total of 120 isolates were obtained and firstly characterized by conventional microbiological methods. Afterward, genomic DNA was extracted from the cultures, and (GTG)5-PCR fingerprinting analysis was carried out to reduce the redundance among the isolates. Representative yeasts and LAB strains, having a unique profile, were identified by sequencing the D1/D2 domain of the 26S rRNA and the 16S rRNA genes, respectively. The results highlighted the occurrence of Kazachstania humilis and Fructilactobacillus sanfranciscensis in both sourdoughs. Among LAB, also some other strains belonging to Lactobacillus genus were found. Moreover, Saccharomyces cerevisiae and Staphylococcus spp. strains were detected in sample B. In this study, a pool of yeasts and LAB strains for producing starter cultures with specific technological traits for sourdoughs production was obtained

    From Natural Woods to High Density Materials: An Ecofriendly Approach

    Get PDF
    Recently, different methods have been proposed to develop wood materials, termed “densified woods”, with density increment and improvement in mechanical proprieties. Almost all the proposed methods involve the use of reducing agents and strong bases. In this work, a new method has been developed involving the use of less polluting agents. The formation of densified woods is divided into two steps: delignification involves the removal of lignin, hemicelluloses, and shorter chains of cellulose, whereas densification involves the plastering of the delignified woods. The obtained materials showed a density increase of two to four times. The obtained densified woods were characterized by spectroscopic, microscopic, and thermogravimetric techniques and mechanical tests. The characterizations aimed at determining the variations of chemical and structural compositions of the samples after delignification and densification processes, showing, respectively, a decrease in lignin and a significant increase in the density and force necessary to bring the materials to yield. The final density of wood was two to three times higher and the force necessary to reach the yield point reached more than three times the initial one for some of the studied samples. These characterizations showed how different woods, with different properties, reach comparable densities and final mechanical properties after delignification and densification process. The increased mechanical properties of the materials allow their application in place of other composite woody materials

    Selection of Wine Saccharomyces cerevisiae Strains and Their Screening for the Adsorption Activity of Pigments, Phenolics and Ochratoxin A

    Get PDF
    Ochratoxin A is a dangerous mycotoxin present in wines and is considered the principal safety hazard in the winemaking process. Several authors have investigated the ochratoxin A adsorption ability of Saccharomyces cerevisiae yeasts, and specifically selected strains for this desired trait. In the present work, a huge selection of wine yeasts was done starting from Portuguese, Spanish and Italian fermenting musts of dierent cultivars. Firstly, 150 isolates were collected, and 99 non-redundant S. cerevisiae strains were identified. Then, the strains were screened following a multi-step approach in order to select those having primary oenological traits, mainly (a) good fermentation performance, (b) low production of H2S and (c) low production of acetic acid. The preselected strains were further investigated for their adsorption activity of pigments, phenolic compounds and ochratoxin A. Finally, 10 strains showed the desired features. The goal of this work was to select the strains capable of absorbing ochratoxin A but not pigments and phenolic compounds in order to improve and valorise both the quality and safety of red wines. The selected strains are considered good candidates for wine starters, moreover, they can be exploited to obtain a further enhancement of the specific adsorption/non-adsorption activity by applying a yeast breeding approach

    Date Fruits as Raw Material for Vinegar and Non-Alcoholic Fermented Beverages

    Get PDF
    Nowadays foods and beverages with healthy and functional properties, especially those claimed to prevent chronic diseases, are obtaining more and more interest. As a result, numerous foods and beverages have been launched on the market. Among products with enhanced properties, vinegar and fermented beverages, have high potential of growth. Date palm fruits are a versatile raw material, rich in sugars, dietary fibers, minerals, vitamins, and phenolic compounds, thus they are widely used for food production, including date juice, jelly, butter, and fermented bever-ages, such as wine and vinegar. Moreover, their composition makes them suitable for the formu-lation of functional foods and beverages. Microbial transformations of date juice include alco-holic fermentation for producing wine as end product or as a substrate for acetic fermentation. Lactic fermentation is also documented for transforming dates juice and syrup. However, con-sidering acetic acid bacteria, little evidence is available on the exploitation of date juice by acetic and gluconic fermentation for producing beverages. This review presents an overview of date fruit’s composition, the related health benefits for hu-man health, vinegar and date-based fermented non-alcoholic beverages obtained by acetic acid bacteria fermentation

    The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance

    Get PDF
    Drought stress can impair leaf hydraulic conductance (Kleaf), but the relative contribution of changes in the efficiency of the vein xylem water pathway and in the mesophyll route outside the xylem in driving the decline of Kleaf is still debated. We report direct measurements of dehydration-induced changes in the hydraulic resistance (R=1/K) of whole leaf (Rleaf), as well as of the leaf xylem (Rx) and extra-vascular pathways (Rox) in four Angiosperm species. Rleaf, Rx, and Rox were measured using the vacuum chamber method (VCM). Rleaf values during progressive leaf dehydration were also validated with measurements performed using the rehydration kinetic method (RKM). We analysed correlations between changes in Rx or Rox and Rleaf, as well as between morpho-anatomical traits (including dehydration-induced leaf shrinkage), vulnerability to embolism, and leaf water relation parameters. Measurements revealed that the relative contribution of vascular and extra-vascular hydraulic properties in driving Kleaf decline during dehydration is species-specific. Whilst in two study species the progressive impairment of both vascular and extra-vascular pathways contributed to leaf hydraulic vulnerability, in the other two species the vascular pathway remained substantially unaltered during leaf dehydration, and Kleaf decline was apparently caused only by changes in the hydraulic properties of the extra-vascular compartment

    Zero- and Low-Alcohol Fermented Beverages: A Perspective for Non-Conventional Healthy and Sustainable Production from Red Fruits

    Get PDF
    The growing health consciousness among consumers is leading to an increased presence of functional foods and beverages on the market. Red fruits are rich in bioactive compounds such as anthocyanins with high antioxidant activity. In addition, red fruits contain sugars and are rich in phenolic compounds, vitamin C, dietary fibers, and manganese. Due to these characteristics, they are also suitable substrates for fermentation. Indeed, nowadays, microbial transformation of red fruits is based on alcoholic or lactic fermentation, producing alcoholic and non-alcoholic products, respectively. Although products fermented by acetic acid bacteria (AAB) have been thoroughly studied as a model of health benefits for human beings, little evidence is available on the acetic and gluconic fermentation of red fruits for obtaining functional products. Accordingly, this review aims to explore the potential of different red fruits, namely blackberry, raspberry, and blackcurrant, as raw materials for fermentation processes aimed at producing low- and no-alcohol beverages containing bioactive compounds and no added sugars. AAB are treated with a focus on their ability to produce acetic acid, gluconic acid, and bacterial cellulose, which are compounds of interest for developing fruit-based fermented beverages

    Anti-Spoilage Activity and Exopolysaccharides Production by Selected Lactic Acid Bacteria

    Get PDF
    In this study, eight lactic acid bacteria (LAB) strains, previously isolated from traditional and gluten-free sourdoughs, and selected for their potential in improving the sensory and rheological quality of bakery products, were screened against some common spoilage agents. The anti-mould activity was tested using strains of the species Fusarium graminearum, Aspergillus flavus, Penicillium paneum and Aspergillus niger. Regarding the antibacterial activity, it was assessed against four strains of the species Escherichia coli, Campylobacter jejuni, Salmonella typhimurium and Listeria monocytogenes. Furthermore, LAB strains were evaluated for their ability to produce exopolysaccharides, which are gaining considerable attention for their functional properties and applicability in different food industrial applications. A strain-specific behaviour against the moulds was observed. In particular, F. graminearum ITEM 5356 was completely inhibited by all the LAB strains. Regarding the antibacterial activity, the strains Leuconostoc citreum UMCC 3011, Lactiplantibacillus plantarum UMCC 2996, and Pediococcus pentosaceus UMCC 3010 showed wide activity against the tested pathogens. Moreover, all the LAB strains were able to produce exopolysaccharides, which were preliminarily characterized. The assessed features of the LAB strains allow us to consider them as promising candidates for single or multiple starter cultures for food fermentation processes

    A Convenient Approach to Luminescent Cyclometalated Platinum(II) Complexes with Organometallic π-Bonded Benzenedithiolate

    Get PDF
    International audienceA family of neutral cyclometalated platinum(II) complexes [(C^N)Pt(η-S^S)] with π-bonded benzenedithiolate {(η-S^S) = Cp*Ru(C6H4S2)} and various cyclometalated ligands, {(C^N) = 2-phenylpyridine (ppy), (2); 2,4-difluorophenylpyridine (F2ppy) (3), benzo[h]quinoline (bzq) (4); dibenzo[f,h]quinoline (dbzq) (5) } were prepared and fully characterized. For comparison purposes the related bipyridine platinum (II) complex [(bpy)Pt(η-S^S)][OTf] (6) was also prepared. The electrochemistry behavior of these complexes was investigated and shows the enhanced stability of these compounds toward oxidation due to the presence of Cp*Ru moiety which is now π-bonded to the benzenedithiolato group. Moreover several complexes were identified by single crystal X-ray molecular structures. To the best of our knowledge these are the first structures to be reported for cyclometalated platinum complexes with a π-bonded benzenedithiolate (bdt) ligand. All of the complexes are luminescent in fluid solution at room temperature and in glassy solution at 77 K; their emission properties can be tuned through ligand variation

    Valorization of wheat bread waste and cheese whey through cultivation of lactic acid bacteria for bio-preservation of bakery products

    Get PDF
    In this work, three lactic acid bacteria (LAB) strains, specifically, Lactiplantibacillus plantarum UMCC 2996, Furfurilactobacillus rossiae UMCC 3002, and Pediococcus pentosaceus UMCC 3010, were tested in new bread-whey media composed by wheat bread and sweet cheese whey, designed as an alternative to the conventional MRS medium. The medium resulting from hydrolysis with amylase and neutrase (AN) was considered the best for the growth of all the strains. This medium was particularly optimal for the strain F. rossiae UMCC 3002, which showed an increase in growth of 114% compared to that in MRS medium. Additionally, the bio-preservative ability of the selected LAB was assessed in pectin-based coated sliced bread inoculated with Aspergillus flavus ITEM 7828, Penicillium paneum ITEM 1381, and Aspergillus niger ITEM 7090. Different LAB strain behavior was observed towards the specific molds. A good bio-preservation activity was shown from F. rossiae UMCC 3002 against A. flavus ITEM 7828 with results compared to the protection by ethanol treatment. The results obtained in this study suggest a novel strategy for the cultivation of selected starters with a bio-protection activity by valorizing bread waste and cheese whey by-products, in a circular economy perspective
    • …
    corecore