3,929 research outputs found

    Self-consistent Keldysh approach to quenches in weakly interacting Bose-Hubbard model

    Full text link
    We present a non-equilibrium Green's functional approach to study the dynamics following a quench in weakly interacting Bose Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particular case of the most general set of Hedin's equations for the interacting single-particle Green's function. We use the ladder approximation as a skeleton diagram for the two-particle scattering amplitude useful, through the self-energy in the Dyson equation, for finding the interacting single-particle Green's function. This scheme is then implemented numerically by a parallelized code. We exploit this approach to study the correlation propagation after a quench in the interaction parameter, for one (1D) and two (2D) dimensions. In particular, we show how our approach is able to recover the crossover from ballistic to diffusive regime by increasing the boson-boson interaction. Finally we also discuss the role of a thermal initial state on the dynamics both for 1D and 2D Bose Hubbard models, finding that surprisingly at high temperature a ballistic evolution is restored.Comment: 13 figure

    Spreading of correlations and Loschmidt echo after quantum quenches of a Bose gas in the Aubry-Andr\'e potential

    Full text link
    We study the spreading of density-density correlations and the Loschmidt echo, after different sudden quenches in an interacting one dimensional Bose gas on a lattice, also in the presence of a superimposed aperiodic potential. We use a time dependent Bogoliubov approach to calculate the evolution of the correlation functions and employ the linked cluster expansion to derive the Loschmidt echo.Comment: 10 pages, 14 figures, a section on momentum distribution function is include

    Conditional Reliability in Uncertain Graphs

    Full text link
    Network reliability is a well-studied problem that requires to measure the probability that a target node is reachable from a source node in a probabilistic (or uncertain) graph, i.e., a graph where every edge is assigned a probability of existence. Many approaches and problem variants have been considered in the literature, all assuming that edge-existence probabilities are fixed. Nevertheless, in real-world graphs, edge probabilities typically depend on external conditions. In metabolic networks a protein can be converted into another protein with some probability depending on the presence of certain enzymes. In social influence networks the probability that a tweet of some user will be re-tweeted by her followers depends on whether the tweet contains specific hashtags. In transportation networks the probability that a network segment will work properly or not might depend on external conditions such as weather or time of the day. In this paper we overcome this limitation and focus on conditional reliability, that is assessing reliability when edge-existence probabilities depend on a set of conditions. In particular, we study the problem of determining the k conditions that maximize the reliability between two nodes. We deeply characterize our problem and show that, even employing polynomial-time reliability-estimation methods, it is NP-hard, does not admit any PTAS, and the underlying objective function is non-submodular. We then devise a practical method that targets both accuracy and efficiency. We also study natural generalizations of the problem with multiple source and target nodes. An extensive empirical evaluation on several large, real-life graphs demonstrates effectiveness and scalability of the proposed methods.Comment: 14 pages, 13 figure

    Core Decomposition in Multilayer Networks: Theory, Algorithms, and Applications

    Get PDF
    Multilayer networks are a powerful paradigm to model complex systems, where multiple relations occur between the same entities. Despite the keen interest in a variety of tasks, algorithms, and analyses in this type of network, the problem of extracting dense subgraphs has remained largely unexplored so far. In this work we study the problem of core decomposition of a multilayer network. The multilayer context is much challenging as no total order exists among multilayer cores; rather, they form a lattice whose size is exponential in the number of layers. In this setting we devise three algorithms which differ in the way they visit the core lattice and in their pruning techniques. We then move a step forward and study the problem of extracting the inner-most (also known as maximal) cores, i.e., the cores that are not dominated by any other core in terms of their core index in all the layers. Inner-most cores are typically orders of magnitude less than all the cores. Motivated by this, we devise an algorithm that effectively exploits the maximality property and extracts inner-most cores directly, without first computing a complete decomposition. Finally, we showcase the multilayer core-decomposition tool in a variety of scenarios and problems. We start by considering the problem of densest-subgraph extraction in multilayer networks. We introduce a definition of multilayer densest subgraph that trades-off between high density and number of layers in which the high density holds, and exploit multilayer core decomposition to approximate this problem with quality guarantees. As further applications, we show how to utilize multilayer core decomposition to speed-up the extraction of frequent cross-graph quasi-cliques and to generalize the community-search problem to the multilayer setting

    Criticality, factorization and long-range correlations in the anisotropic XY-model

    Get PDF
    We study the long-range quantum correlations in the anisotropic XY-model. By first examining the thermodynamic limit we show that employing the quantum discord as a figure of merit allows one to capture the main features of the model at zero temperature. Further, by considering suitably large site separations we find that these correlations obey a simple scaling behavior for finite temperatures, allowing for efficient estimation of the critical point. We also address ground-state factorization of this model by explicitly considering finite size systems, showing its relation to the energy spectrum and explaining the persistence of the phenomenon at finite temperatures. Finally, we compute the fidelity between finite and infinite systems in order to show that remarkably small system sizes can closely approximate the thermodynamic limit.Comment: 8 pages, 8 figures. Close to published versio

    Autoriciclaggio

    Get PDF
    L'introduzione del delitto di autoriciclaggio ha indubbiamente rappresentato un momento di rottura rispetto alla nostra tradizione di non punire l'autore o il concorrente nel delitto presupposto. La formulazione normativa dell'art. 648-ter.1. c.p. ha subito sollevato numerose e delicate questioni interpretative: dalla definizione del perimetro della fattispecie; al ruolo della clausola di non punibilit\ue0 di cui al quarto comma della disposizione; ai rapporti tra riciclaggio e autoriciclaggio, per citarne solo alcuni. L'obiettivo del presente lavoro \ue8 quello di affrontare, muovendo da un'analisi degli elementi costitutivi del delitto in esame, tali nodi interpretativi, cercando di prospettare delle soluzioni in linea con il nuovo assetto di disciplina prefigurato dal legislatore

    The determination of velocity fluctuations in shear flows by means of PTV

    Get PDF
    The present study considers the effects of some parameters in image acquisition and analysis procedures in connection with the use of the Particle Tracking Velocimetry (PTV) technique. The interest is focused towards flow fields with large velocity gradients as shear flows; in the paper, velocity measurements by PTV are performed in a turbulent channel flow upstream and downstream of a backward facing step at low Reynolds numbers. This is a flow field largely investigated in the past with available numerical and experimental to make comparison with. Among the possible parameters to be chosen in particle image acquisition and analysis, the following are considered - the concentration of seeding particles in the imaged region; - the spatial resolution of the image acquisition system; - the parameters used in the image analysis algorithm
    • …
    corecore