107 research outputs found

    Current and Emerging Molecular Tests for Human Papillomavirusā€“Related Neoplasia in the Genomic Era

    Get PDF
    Laboratory tests have a key role in preventing human papillomavirus (HPV)-driven carcinomas and in guiding therapeutic interventions. An understanding of the virology, immunology, and carcinogenesis of HPV is essential for choosing appropriate diagnostic test modalities and developing new and even more effective cancer prevention strategies. HPV infects basal epithelial cells on multiple surfaces and induces carcinoma primarily in the cervix and the oropharynx. HPV types are stratified as high risk or low risk based on their carcinogenic potential. During oncogenesis, HPV interferes with cell cycle regulation and incites DNA damage responses that thwart apoptosis and enable mutations to accumulate. Such mutations are an adverse effect of innate and adaptive antiviral immune responses that up-regulate DNA-editing enzymes, with natural selection of cells having a chromosomally integrated viral genome lacking expression of viral proteins targeted by the immune system. Infected cancers share a similar mutation signature, reflecting the effect of apolipoprotein B mRNA-editing catalytic polypeptide enzyme DNA-editing enzymes. It is feasible that genomic tests for characteristic mutations or methylation signatures, along with tests for dysregulated HPV gene expression, add value in predicting behavior of premalignant lesions. Furthermore, these tumor markers in cell-free DNA of plasma or body fluids may one day assist in early detection or monitoring cancer burden during treatment

    Genomic assays for Epsteinā€“Barr virus-positive gastric adenocarcinoma

    Get PDF
    A small set of gastric adenocarcinomas (9%) harbor Epsteinā€“Barr virus (EBV) DNA within malignant cells, and the virus is not an innocent bystander but rather is intimately linked to pathogenesis and tumor maintenance. Evidence comes from unique genomic features of host DNA, mRNA, microRNA and CpG methylation profiles as revealed by recent comprehensive genomic analysis by The Cancer Genome Atlas Network. Their data show that gastric cancer is not one disease but rather comprises four major classes: EBV-positive, microsatellite instability (MSI), genomically stable and chromosome instability. The EBV-positive class has even more marked CpG methylation than does the MSI class, and viral cancers have a unique pattern of methylation linked to the downregulation of CDKN2A (p16) but not MLH1. EBV-positive cancers often have mutated PIK3CA and ARID1A and an amplified 9p24.1 locus linked to overexpression of JAK2, CD274 (PD-L1) and PDCD1LG2 (PD-L2). Multiple noncoding viral RNAs are highly expressed. Patients who fail standard therapy may qualify for enrollment in clinical trials targeting cancer-related human gene pathways or promoting destruction of infected cells through lytic induction of EBV genes. Genomic tests such as the GastroGenus Gastric Cancer Classifier are available to identify actionable variants in formalin-fixed cancer tissue of affected patients

    Molecular Oncology Testing in Resource-Limited Settings

    Get PDF
    Cancer prevalence and mortality are high in developing nations, where resources for cancer control are inadequate. Nearly one-quarter of cancers in resource-limited nations are infection related, and molecular assays can capitalize on this relationship by detecting pertinent pathogen genomes and human gene variants to identify those at highest risk for progression to cancer, to classify lesions, to predict effective therapy, and to monitor tumor burden over time. Prime examples are human papillomavirus in cervical neoplasia, Helicobacter pylori and Epstein-Barr virus in gastric adenocarcinoma and lymphoma, and hepatitis B or C virus in hepatocellular cancer. Research is underway to engineer devices that overcome social, economic, and technical barriers limiting effective laboratory support. Additional challenges include an educated workforce, infrastructure for quality metrics and record keeping, and funds to sustain molecular test services. The combination of well-designed interfaces, novel and robust electrochemical technology, and telemedicine tools will promote adoption by frontline providers. Fast turnaround is crucial for surmounting loss to follow-up, although increased use of cell phones, even in rural areas, enhances options for patient education and engagement. Links to a broadband network facilitate consultation and centralized storage of medical data. Molecular technology shows promise to address gaps in health care through rapid, user-friendly, and cost-effective devices reflecting clinical priorities in resource-poor areas

    Genetic Tests To Evaluate Prognosis and Predict Therapeutic Response in Acute Myeloid Leukemia

    Get PDF
    Management of patients with acute myeloid leukemia relies on genetic tests that inform diagnosis and prognosis, predict response to therapy, and measure minimal residual disease. The value of genetics is reinforced in the revised 2008 World Health Organization acute myeloid leukemia classification scheme. The various analytic proceduresā€”karyotype, fluorescence in situ hybridization, reverse transcription polymerase chain reaction, DNA sequencing, and microarray technologyā€”each have advantages in certain clinical settings, and understanding their relative merits assists in specimen allocation and in effective utilization of health care resources. Karyotype and array technology represent genome-wide screens, whereas the other methods target specific prognostic features such as t(15;17) PML-RARA, t(8;21) RUNX1-RUNX1T1, inv(16) CBFB-MYH11, 11q23 MLL rearrangement, FLT3 internal tandem duplication, or NPM1 mutation. New biomarkers and pharmacogenetic tests are emerging. The pathologist's expertise is critical in 1) consulting with clinicians about test selection as well as specimen collection and handling; 2) allocating tissue for immediate testing and preserving the remaining specimen for any downstream testing that is indicated once morphology and other pertinent test results are known; 3) performing tests that maximize outcome based on the strengths and limitations of each assay in each available specimen type; and 4) interpreting and conveying results to the rest of the health care team in a format that facilitates clinical management. Acute myeloid leukemia leads the way for modern molecular medicine

    Quality Assurance of RNA Expression Profiling in Clinical Laboratories

    Get PDF
    RNA expression profiles are increasingly used to diagnose and classify disease, based on expression patterns of as many as several thousand RNAs. To ensure quality of expression profiling services in clinical settings, a standard operating procedure incorporates multiple quality indicators and controls, beginning with preanalytic specimen preparation and proceeding thorough analysis, interpretation, and reporting. Before testing, histopathological examination of each cellular specimen, along with optional cell enrichment procedures, ensures adequacy of the input tissue. Other tactics include endogenous controls to evaluate adequacy of RNA and exogenous or spiked controls to evaluate run- and patient-specific performance of the test system, respectively. Unique aspects of quality assurance for array-based tests include controls for the pertinent outcome signatures that often supersede controls for each individual analyte, built-in redundancy for critical analytes or biochemical pathways, and software-supported scrutiny of abundant data by a laboratory physician who interprets the findings in a manner facilitating appropriate medical intervention. Access to high-quality reagents, instruments, and software from commercial sources promotes standardization and adoption in clinical settings, once an assay is vetted in validation studies as being analytically sound and clinically useful. Careful attention to the well-honed principles of laboratory medicine, along with guidance from government and professional groups on strategies to preserve RNA and manage large data sets, promotes clinical-grade assay performance

    Standard Mutation Nomenclature in Molecular Diagnostics

    Get PDF
    To translate basic research findings into clinical practice, it is essential that information about mutations and variations in the human genome are communicated easily and unequivocally. Unfortunately, there has been much confusion regarding the description of genetic sequence variants. This is largely because research articles that first report novel sequence variants do not often use standard nomenclature, and the final genomic sequence is compiled over many separate entries. In this article, we discuss issues crucial to clear communication, using examples of genes that are commonly assayed in clinical laboratories. Although molecular diagnostics is a dynamic field, this should not inhibit the need for and movement toward consensus nomenclature for accurate reporting among laboratories. Our aim is to alert laboratory scientists and other health care professionals to the important issues and provide a foundation for further discussions that will ultimately lead to solutions

    Epstein-Barr virus-specific methylation of human genes in gastric cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epstein-Barr Virus (EBV) is found in 10% of all gastric adenocarcinomas but its role in tumor development and maintenance remains unclear. The objective of this study was to examine EBV-mediated dysregulation of cellular factors implicated in gastric carcinogenesis.</p> <p>Methods</p> <p>Gene expression patterns were examined in EBV-negative and EBV-positive AGS gastric epithelial cells using a low density microarray, reverse transcription PCR, histochemical stains, and methylation-specific DNA sequencing. Expression of PTGS2 (COX2) was measured in AGS cells and in primary gastric adenocarcinoma tissues.</p> <p>Results</p> <p>In array studies, nearly half of the 96 human genes tested, representing 15 different cancer-related signal transduction pathways, were dysregulated after EBV infection. Reverse transcription PCR confirmed significant impact on factors having diverse functions such as cell cycle regulation (<it>IGFBP3</it>, <it>CDKN2A, CCND1, HSP70, ID2, ID4)</it>, DNA repair <it>(BRCA1, TFF1</it>), cell adhesion (<it>ICAM1</it>), inflammation (<it>COX2</it>), and angiogenesis (<it>HIF1A</it>). Demethylation using 5-aza-2'-deoxycytidine reversed the EBV-mediated dysregulation for all 11 genes listed here. For some promoter sequences, CpG island methylation and demethylation occurred in an EBV-specific pattern as shown by bisulfite DNA sequencing. Immunohistochemistry was less sensitive than was western blot for detecting downregulation of COX2 upon EBV infection. Virus-related dysregulation of COX2 levels <it>in vitro </it>was not recapitulated <it>in vivo </it>among naturally infected gastric cancer tissues.</p> <p>Conclusions</p> <p>EBV alters human gene expression in ways that could contribute to the unique pathobiology of virus-associated cancer. Furthermore, the frequency and reversability of methylation-related transcriptional alterations suggest that demethylating agents have therapeutic potential for managing EBV-related carcinoma.</p

    Validation and calibration of next-generation sequencing to identify Epstein-Barr virus-positive gastric cancer in The Cancer Genome Atlas

    Get PDF
    The Epstein-Barr virus (EBV)-positive subtype of gastric adenocarcinoma is conventionally identified by in situ hybridization (ISH) for viral nucleic acids, but next-generation sequencing represents a potential alternative. We therefore determined normalized EBV read counts by whole genome, whole exome, mRNA and miRNA sequencing for 295 fresh-frozen gastric tumor samples. Formalin-fixed, paraffin-embedded tissue sections were retrieved for ISH confirmation of 13 high-EBV and 11 low-EBV cases. In pairwise comparisons, individual samples were either concordantly high or concordantly low by all genomic methods for which data were available. Empiric cut-offs of sequencing counts identified 26 (9%) tumors as EBV-positive. EBV-positivity or negativity by molecular testing was confirmed by EBER-ISH in all but one tumor evaluated by both approaches (kappa=0.91). EBV-positive gastric tumors may be accurately identified by quantifying viral sequences in genomic data. Simultaneous analyses of human and viral DNA, mRNA and miRNA could streamline tumor profiling for clinical care and research

    Identification of Human Papillomavirus Infection in Cancer Tissue by Targeted Next-generation Sequencing

    Get PDF
    Human papillomaviruses (HPV) are oncogenic DNA viruses implicated in squamous cell carcinomas of several anatomic sites, as well as endocervical adenocarcinomas. Identification of HPV is an actionable finding in some carcinomas, potentially influencing tumor classification, prognosis, and management. We incorporated capture probes for oncogenic HPV strains 16 and 18 into a broader next-generation sequencing (NGS) panel designed to identify actionable mutations in solid malignancies. A total of 21 head and neck, genitourinary and gynecological squamous cell carcinomas and endocervical adenocarcinomas were sequenced as part of the UNCSeq project. Using p16 immunohistochemical results as the gold standard, we set a cutoff for proportion of aligned HPV reads that maximized performance of our NGS assay (92% sensitive, 100% specific for HPV). These results suggest that sequencing of oncogenic pathogens can be incorporated into targeted NGS panels, extending the clinical utility of genomic assays
    • ā€¦
    corecore