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Management of patients with acute myeloid leukemia
relies on genetic tests that inform diagnosis and
prognosis , predict response to therapy, and mea-
sure minimal residual disease. The value of genetics is
reinforced in the revised 2008 World Health Organi-
zation acute myeloid leukemia classification scheme.
The various analytic procedures—karyotype, fluores-
cence in situ hybridization, reverse transcription
polymerase chain reaction, DNA sequencing, and mi-
croarray technology—each have advantages in cer-
tain clinical settings, and understanding their relative
merits assists in specimen allocation and in effective
utilization of health care resources. Karyotype and
array technology represent genome-wide screens,
whereas the other methods target specific prognostic
features such as t(15;17) PML-RARA , t(8;21) RUNX1-
RUNX1T1 , inv(16) CBFB-MYH11 , 11q23 MLL rear-
rangement , FLT3 internal tandem duplication, or
NPM1 mutation. New biomarkers and pharmacoge-
netic tests are emerging. The pathologist’s expertise is
critical in 1) consulting with clinicians about test se-
lection as well as specimen collection and handling;
2) allocating tissue for immediate testing and preserv-
ing the remaining specimen for any downstream test-
ing that is indicated once morphology and other per-
tinent test results are known; 3) performing tests that
maximize outcome based on the strengths and limi-
tations of each assay in each available specimen type;
and 4) interpreting and conveying results to the rest
of the health care team in a format that facilitates
clinical management. Acute myeloid leukemia leads
the way for modern molecular medicine. (J Mol Diagn
2010, 12:3–16; DOI: 10.2353/jmoldx.2010.090054)

More is known about the molecular basis of leukemia
than any other form of cancer, primarily due to the avail-

ability of abundant malignant cells for study and because
translocations and other gross chromosomal changes
are often visible by karyotype. Limited prognostic and
predictive ability of traditional morphological, immuno-
phenotypic, and cytogenetic tests has driven research to
define more subtle nucleotide-level alterations that not
only shed light on pathogenesis but also serve as tumor
markers and, in some cases, impart valuable prognostic
information. Better understanding of disease biology and
pathogenesis is essential to cancer prevention and to
design novel interventions that are personalized to the
host and tumor genotype.

The World Health Organization classification scheme
for acute myeloid leukemia (AML) provides a framework
for clinical management. It was revised in 2008 to add
three distinct forms of AML with recurrent cytogenetic
abnormalities �t(6;9), inv(3) and t(1;22)� and two provi-
sional categories with nucleotide level changes (involving
NPM1 and CEBPA genes). These revisions emphasize
the importance of genetic test results to define clinically
relevant disease entities in conjunction with morphology,
immunophenotype, and other clinicopathologic features1

(Table 1). Moreover, management guidelines of the
National Comprehensive Cancer Network highlight the
added value of genetic tests in combination with more
traditional microscopic examination and immunopheno-
typing (http://www.nccn.org/professionals/physician_gls/
f_guidelines.asp, accessed July 14, 2009).

The relevant genetic technologies include karyotype,
fluorescence in situ hybridization (FISH), polymerase
chain reaction (PCR), sequencing, and microarrays.
These DNA or RNA assays are widely considered to be
the most powerful tools for predicting behavior of AML in
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response to therapy. Automation and kits are becoming
available to facilitate implementing standardized assays
in clinical laboratories. Results not only identify disease-
specific genetic alterations that are important for diagno-

sis and upfront management but also provide a mecha-
nism to monitor tumor burden in response to therapy and
to detect minimal residual disease that could herald im-
pending relapse.

Definitions of several terms are pertinent. A prognostic
test is one used to assess the likelihood of response to
standard therapy, while a predictive test is used to as-
sess response to a particular nonstandard intervention. A
pharmacogenetic test is a predictive test for a specific
pharmaceutical agent or regimen. Worldwide consensus
on best practices for managing AML is evolving, and
optimal test strategies and intervention for a given patient
depend on factors beyond genetic test results.

Genetic Technologies

A brief description of each genetic technology is pro-
vided in Table 2. Gross translocations and numerical
changes in chromosomes are readily detected by karyo-
typing. Less commonly recognized (but certainly not less
commonly present) are mutations, subtle deletions,
and/or gene amplifications. Regardless of which genetic
defects initiate tumor cell growth, these defects are
passed down to all cellular progeny within a tumor clone.
Certain defects are characteristic of distinct clinicopath-
ologic subtypes of cancer, and these defects serve as
markers of the malignancy that can be used to assist in
diagnosis, classification, and monitoring residual disease
after therapy. Furthermore, knowledge of the affected
biochemical pathway could help identify therapy target-
ing the underlying cause of malignant cell growth.

Karyotype

The karyotype represents a genome wide screen for
translocations and other numeric or structural defects

Table 1. 2008 World Health Organization Classification of
Acute Myeloid Leukemia and Related Tumors

AML with recurrent genetic abnormalities
AML with t(8;21)(q22;q22) RUNX1-RUNX1T1

(CBFA-ETO)
AML with inv(16)(p13q22) or t(16;16)(p13;q22)

CBFB-MYH11
APL with t(15;17)(q22;q11–12) PML-RARA
AML with t(9;11)(p22;q23) MLLT3-MLL and other

balanced translocations of 11q23 (MLL)
AML with t(6;9)(p23;q34) DEK-NUP214
AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2)

RPN1-EVI1
AML (megakaryoblastic) with t(1;22)(p13;q13)

RBM15-MKL1
AML with mutated NPM1*
AML with mutated CEBPA*

Acute myeloid leukemia with myelodysplasia-related
changes

Therapy-related myeloid neoplasms
AML, not otherwise specified

AML with minimal differentiation
AML without maturation
AML with maturation
Acute myelomonocytic leukemia
Acute monoblastic/monocytic leukemia
Acute erythroid leukemias
Acute megakaryoblastic leukemia
Acute basophilic leukemia
Acute panmyelosis with myelofibrosis

Myeloid sarcoma
Myeloid proliferations related to Down syndrome (�21)

Transient abnormal myelopoiesis
Myeloid leukemia associated with Down syndrome

Blastic plasmacytoid dendritic cell neoplasms

Adapted from Swerdlow et al.1

*Provisional categories.

Table 2. Genetic Test Methods

Laboratory Test Description of Methods

Karyotype: Whole chromosomes from cells in the metaphase stage of cell division are stained and
visualized by microscopy.

Fluorescence in situ hybridization
(FISH):

Whole chromosomes (metaphase from dividing cells or interphase from non-dividing cells)
are hybridized to complementary probes and visualized on a fluorescence microscope.

Polymerase chain reaction (PCR): DNA is isolated and a specific segment of it is copied a billion-fold for ease of detection
and for further analysis. A variant method called reverse transcription PCR (rtPCR)
converts RNA into complementary DNA (cDNA) prior to PCR amplification. A variant
called quantitative PCR (Q-PCR) can measure the level of target DNA, usually by
monitoring product accumulation during each cycle using one or more fluorescent
internal probes, and then comparing the time course of product accumulation to a
series of standards of known concentration. A fluorescent internal probe combined with
“melt curve analysis” detects sequence variants within the amplicon.

DNA sequencing: The nucleotide sequence is determined by replicating one of the DNA strands and
monitoring the order in which labeled nucleotides are added.

Comparative genomic hybridization
array (CGH array):

Patient DNA is hybridized to hundreds or thousands of probes arrayed on a solid
surface, and gene dosage is determined for each locus on the array, thus identifying
deletions, duplications, and gene amplifications. Single nucleotide polymorphism (SNP)
arrays can additionally detect copy-neutral loss of heterozygosity (uniparental disomy).

Gene expression array: Patient RNA is typically amplified and labeled, then mixed with control RNA labeled with
a different fluorochrome and hybridized to hundreds or even hundreds of thousands of
probes (eg, 60-mers) arrayed on a solid surface. Scans of each spot followed by data
analysis permit evaluation of the gene expression profile in the tissue, which can be
matched to the pattern of normal or diseased tissues for purposes of diagnosis, or to
the pattern of clinical outcome variants to predict response to therapy.
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that are present in about half of AMLs. Giemsa staining
patterns (G-bands) are interpreted for each chromosome
in at least 20 fresh dividing cells. Findings are further
interpreted in the context of the patient’s clinical and
histopathological features to help diagnose and classify
AML. Even nonspecific karyotypic changes can impact
prognosis: a complex karyotype, usually defined as three
or more concomitant defects, portends a poor prognosis
in children and adults, including patients over 60 years
old.2–5 Recent data suggest that a “monosomal karyo-
type,” defined by two or more autosomal monosomies or
one monosomy plus one or more structural defects, for
example, �5 with �20, or �7 with t(3;3)(q21;q26), is
indicative of bad outcome in adults less than 60 years
old, with an overall survival of only 4% at 4 years.6

Fluorescence in Situ Hybridization

FISH can be applied to either interphase (nondividing) or
metaphase (dividing) cells where it is used to: 1) confirm
a tumor-related karyotypic defect that can then be mon-
itored over time in blood or marrow specimens, 2) detect
cryptic translocation in a tumor suspected to harbor a
particular defect based on clinicopathologic findings,
3) detect a deletion or duplication not evident by karyo-
type, and 4) discover critical cytogenetic information in
specimens failing to grow in tissue culture media.

FISH probes are commercially available for relevant
targets including t(15;17) PML-RARA, t(8;21) RUNX1-
RUNX1T1, inv(16) CBFB-MYH11, and 11q23 MLL.7 Vari-
ous probe strategies (eg, single fusion, dual fusion, or
break-apart) are used depending on the technical and
clinical circumstances.8 For example, a dual fusion strat-
egy has better analytic sensitivity for finding low level
PML-RARA, while a break-apart probe strategy detects
any of the relevant RARA translocations irrespective of
the partner gene. Centromere probes are used to enu-
merate chromosomal gains or losses such as trisomy 8 or
monosomy 7. Published guidelines for validating FISH
assays include recommendations on how to set a cutoff
for interpreting results as normal versus abnormal.8

Sensitivity for detecting minimal residual disease de-
pends on the probe strategy, specimen quality, and the
number of cells that are scored. A typical interphase FISH
is performed on 200 cells and reliably detects a leukemic
clone involving at least 5% of cells in the specimen. This
level of sensitivity is comparable with that of a 20-cell
karyotype, although karyotype sensitivity varies depend-
ing on the relative growth rate of leukemic versus nontu-
mor cells ex vivo. In dividing cells, metaphase FISH or
hypermetaphase FISH can be applied to resolve com-
plex karyotypes and identify partner genes fused by
translocation.

A variation of FISH known as spectral karyotyping or
multiplex FISH applies multiple labeled probes along
whole chromosomes, essentially “painting” each of the
24 chromosomes a different color. Results are interpreted
in conjunction with G-banded karyotype to sort out com-
plex rearrangements. The gene copy number information
is similar to, albeit with less resolution than, comparative
genomic hybridization arrays.

Polymerase Chain Reaction

PCR has tremendous analytic sensitivity and has become
a mainstay of molecular pathology. PCR can find “a
needle in a haystack” because, after 30 cycles of
amplification, each DNA or cDNA target sequence has
been copied 230 times, yielding a billion amplicons.
These amplicons can be quantified using precise real-
time instrumentation, and/or amplicons can be further
evaluated using various analytic methods like sequenc-
ing, melt curve analysis, or electrophoresis. In typical
clinical assays, a dilution of one leukemic cell per 100,000
normal cells is identifiable, facilitating detection of mini-
mal residual disease. Paucicellular specimens and partially
degraded nucleic acid can often be accommodated, which
is helpful in unusual samples like cerebrospinal fluid or
biopsied myeloid sarcoma. Molecular protocols have
been published, and commercial primers and probes are
available for selected fusion transcripts, mutations, and
controls.9–17

DNA Sequencing

Determining the order of nucleotide bases is useful for
genes like CEBPA having multiple alternative mutations at
different nucleotide positions. Traditional assays relying
on dideoxynucleotide incorporation can identify a variant
comprising at least 20% of alleles in the specimen (equiv-
alent to 40% of cells). Pyrosequencing, which detects
pyrophosphate release, is potentially more sensitive and
also more quantitative. High throughput sequencing
methods are now being validated to expand coverage
and in some instances to improve assay sensitivity.

Microarrays

Array technology is being validated for use in clinical
laboratories so that many simultaneous analyses may be
performed, such as gene expression profiling, gene copy
number measurement, methylation, or allele-specific mu-
tation detection. The massive amount of data generated
by arrays requires bioinformatic tools to present the data
in a manner that facilitates interpretation. Quality assur-
ance and assay validation are especially challenging
when so many tests are performed simultaneously.

Prognostic Applications of Genetic
Technologies

Karyotype Is Prognostic

Karyotype is recommended in every suspected AML for
proper diagnosis and classification. In the 2008 World
Health Organization classification scheme, over two-thirds
of AML cases are categorized based on genetic tests
compared with only one-third in the 2001 World Health
Organization scheme.1 Even when blast percentage in
blood or marrow does not exceed the 20% usually re-
quired for diagnosis of AML, presence of t(15;17), t(8;21),
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or inv(16) in the face of abnormal hematopoiesis is con-
sidered sufficient for a diagnosis of AML.

National Comprehensive Cancer Network guidelines
refer to cytogenetics as the “single most important prog-
nostic factor for predicting remission rate, relapse, and
overall survival” (Figure 1). The choice of which therapy
to deliver rests largely on grouping of AMLs into one of
three categories: favorable, intermediate, or unfavorable
risk.18,24–26 Among 1213 AML patients treated on CALGB
protocols, the 5-year survival rate was 55% for favorable,
24% for intermediate, and 5% for unfavorable cytoge-
netic categories.27 Outcomes have improved since 2002
when these data were published, and now it has become
routine to supplement karyotype with assays for molecu-
lar-level defects as described below.

Assays for Cryptic Translocation and MLL Gene
Defects

In the �45% of adult AML having a normal karyotype,
FISH or rtPCR may help detect cryptic translocation
whenever the clinical presentation (eg, DIC), morphology
and immunophenotype is suggestive of one of the three
favorable subtypes, t(8;21), t(15;17), or inv(16).7,28,29 An-
other defect that is missed by karyotype involves partial
tandem duplication of the MLL gene on chromosome
11q23.30,31 Whether MLL is altered by partial tandem
duplication or by translocation with any of �70 partners,
MLL rearrangement portends a poor outcome in AML, ex-
cept for t(9;11), which imparts an intermediate risk.32–34

Patients with poor prognosis MLL rearrangement or partial
tandem duplication are candidates for allogeneic stem cell
transplant.

Acute Promyelocytic Leukemia with t(15;17)
PML-RARA

Acute promyelocytic leukemia (APL) is an archetypal
example of how genetic technologies are used in cancer
diagnosis and management. It is important to recognize
leukemia harboring t(15;17) PML-RARA because of the

unique treatment strategies and monitoring assays that
are available to affected patients. Retinoic acid receptor
� (RARA) gene structure is altered by translocation to
thwart RARA transcription factor function and arrest dif-
ferentiation at the promyelocyte stage. The molecular
defect in most cases can be overcome by treating with
high doses of retinoic acid (all-trans-retinoic acid, ATRA),
providing a prime example of cancer therapy specifically
targeting a gene product involved in tumorigenesis. In-
troduction of retinoic acid therapy represented a para-
digm shift in managing leukemia because this drug op-
erates by overcoming the effect of the translocation
rather than by eliminating the malignant clone. To dimin-
ish the likelihood that secondary mutation renders the
tumor resistant to single agent ATRA, combination ther-
apy with an anthracycline-based regimen or with arsenic
trioxide is recommended and is curative in about 80% of
cases, representing one of the greatest advances in the
history of cancer therapy.

A small subset of patients with morphological and
clinical features overlapping those of classic t(15;17) APL
have variant translocations: t(11;17)(q23;q12) ZBTB16-
RARA (previously called PLZF-RARA), t(5;17)(q35;q12)
NPM1-RARA, t(11;17)(q13;q12) NUMA1-RARA, t(4;
17)(q12;q21) FIP1L1-RARA, interstitial duplication of
chromosome 17 resulting in STAT5B-RARA fusion, or oc-
cult rearrangement of chromosome 17 resulting in
PRKAR1A-RARA fusion.35–37 Unraveling the genetics has
therapeutic implications since defects involving ZBTB16
or STAT5B may be resistant to ATRA. Nonetheless, when
a morphological diagnosis of APL is made, it is reason-
able to begin targeted therapy pending genetic testing,
and adjust the therapeutic regimen if a relevant genetic
defect is not identified.38

More than 95% of APLs harbor a PML-RARA translo-
cation detectable by karyotype, FISH, or rtPCR.28,39–41

The most sensitive of these is rtPCR in which RNA ex-
tracted from blood or marrow is converted to cDNA and
then primers flanking the PML-RARA breakpoint spe-
cifically amplify the chimeric sequence (Figure 2). As
with any assay targeting RNA, special precautions are
needed to avoid RNA degradation. Negative results are

Figure 1. Prognosis in AML strongly correlates
with cytogenetic findings.18–21 Favorable prog-
nosis is associated with t(15;17), t(8;21), or
inv(16) whether alone or in combination with
other chromosomal abnormalities, with the pos-
sible exception of inv(16) or t(8;21) with com-
plex karyotype. An intermediate prognosis is
associated with normal karyotype or select ab-
normalities: �6, �8, �7q, �9q, �12p, �21,
�22, �Y. Adverse outcome is associated with
abnormal 3q, 11q, 17p, 20q, 21q, or with �5,
�5q, �7, �7q, �9q, t(6;9), t(9;22), or with com-
plex karyotype. Abnormalities of the MLL gene
on 11q23 impart a dismal prognosis.22,23 In chil-
dren, poor survival is associated with mono-
somies or complex karyotype.5 (Adapted from
Grimwade18 with permission).
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reported only when a control test of a “housekeeping”
transcript shows that amplifiable cDNA was achieved,
and results are reported in the context of assay sensitivity
so that it is clear whether the assay can detect minimal
residual disease.

After chemotherapeutic induction, consolidation therapy
is used to achieve a durable molecular remission. Patients
are likely to relapse if they do not achieve molecular remis-
sion in the marrow as assessed by rtPCR after consolida-
tion.42 National Comprehensive Cancer Network guidelines
suggest that a positive rtPCR test result should be con-
firmed, and repeat positivity is treated as if the patient had
hematological relapse (AML Clinical Practice Guideline Ver-
sion 2009.1, accessedathttp://www.nccn.org/professionals/
physician_gls/f_guidelines.asp on July 14, 2009) In con-
trast, patients having consistently negative results after
consolidation therapy enjoy prolonged survival and may
even be cured.26,43

To detect early relapse, the National Comprehensive
Cancer Network guidelines recommend that rtPCR be
performed on either blood or marrow at 3-month intervals
for the next 2 years, and then every 6 months for 2 to 3
years. Confirmed positive results, as defined by persis-
tent positive rtPCR within a month of the first positive
result, with at least one of these positive results being in
marrow, warrant treatment for relapse. Patients who
achieve molecular remission (negative by rtPCR) after
being treated for relapse have better outcomes than
those who remain positive. Readers are referred to alter-
native practice guidelines for further opinions on testing
strategies in patient management.38,44–47

Prognosis of AML with Normal Karyotype

Studies have implicated a number of molecular abnor-
malities as being prognostic in cytogenetically normal
AML (Figure 3). The various defects are not necessarily
mutually exclusive, implying that each tumor probably

harbors multiple genetic abnormalities, and any one le-
sion may be insufficient for malignant transformation.48,49

The combinations of abnormalities are not random,
suggesting that co-acquisition of selected defects syn-
ergizes in leukemogenesis. One defect blocking differ-
entiation and a second defect inducing proliferation ap-
pears to be a potent recipe for acute leukemia.50–52 Sorting
out the pathogenic defects from benign “passenger de-
fects” is a daunting task given the propensity of cancers to
acquire secondary genetic alterations. Some abnormalities
are prognostic only in certain subsets of cancer (Table 3).

Molecular tests are increasingly applied to reveal tu-
mor characteristics that refine prognosis in cytogenetically
normal AML. Test results are used to select those patients
who may benefit from chemotherapy and those who should
be considered for an allogeneic stem cell transplant if a
suitable donor is available and if patient age, comorbidities,
and other factors are amenable for allografting.48

FLT3 Internal Tandem Duplication Confers a
Worse Prognosis

Activating mutation of the FMS-related tyrosine kinase 3
(FLT3) gene is associated with a higher risk of relapse
and a worse prognosis.53,54 The relevant mutation is an
in-frame internal tandem duplication (ITD) within the cod-
ing sequence of the juxtamembrane domain that causes
constitutive activation of the encoded FLT3 tyrosine ki-
nase. Signaling through the MAPK, PI3K, and STAT5
pathways contributes to proliferation, resistance to apop-
tosis, and blocked differentiation. FLT3 ITD testing is
recommended in all cytogenetically normal AML patients
who are candidates for allogeneic transplantation or in-
vestigational therapies.55 FLT3 ITD is also present in a
subset of APLs, but the implications for patient manage-
ment are unclear.56–58

To identify the FLT3 ITD, DNA from leukemic cells is
first amplified using PCR and then sized by capillary
electrophoresis to detect an abnormally large amplicon
associated with ITD59 (Figure 4). The extent of amplicon
enlargement varies from 3 to about 400 bp, and the
insertion is always “in frame” to preserve the translation
and function of the remaining FLT3 domains. A high ratio
of mutant to wild-type FLT3 has been linked to a worse
outcome.60

Figure 2. The PML and RARA genes are shown, along with three forms of
PML-RARA fusion transcripts. Breaks in PML are clustered into three regions:
intron 3, the distal half of exon 6, or intron 6. RARA breakpoints are spread
across intron 2. In the PML-RARA fusion transcript, either exon 3 or exon 6
of PML is juxtaposed with exon 3 of RARA to produce short (S), long (L), or
variable (V) length coding sequence. The short form, also called the bcr3
isoform, may carry a worse prognosis.

Figure 3. Relative frequencies of common recurrent genetic abnormalities in
acute myeloid leukemia.
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While the ITD is strongly prognostic in both adults
and children, point mutation in the kinase domain of
FLT3 does not seem to have a major influence on
outcome.61,62 Mis-sense mutations can rarely occur in
the juxtamembrane domain and may confer activation
similar to that of the ITD.63 Testing for activating point
mutations in FLT3 is currently recommended only in clin-
ical trials where efficacy of a putative FLT3 inhibitor is
being examined.

NPM1 Mutation Confers a Better Prognosis

Nucleophosmin (NPM1) mutation is associated with a
good prognosis when FLT3 ITD is absent and an inter-
mediate prognosis when FLT3 ITD is present.60 The
NPM1 mutation results from insertion (or combined inser-
tion and deletion) in one allele of NPM1. The gene en-
codes a nuclear shuttle protein that, when mutated, ab-
errantly localizes to the cytoplasm, affecting its regulation
of the ARF-p53 pathway.64,65 NPM1 mutation is found in
30% of all adult AML,66 and it is enriched for in those with

normal karyotype (55% of cases), which is the recom-
mended target population for prognostic testing. It is
much less common in childhood AML (8%) where it is
most informative of outcome in cytogenetically normal
tumors without FLT3 ITD.67,68

Two predictive aspects of NPM1 mutation have been
proposed and must now be independently validated:
1) Patients with NPM1 mutation without FLT3 ITD do not
necessarily benefit from allogeneic stem cell transplant
following conventional anthracycline and cytarabine-
based induction therapy54; and 2) older patients with
NPM1 mutation without FLT3 ITD might benefit from add-
ing ATRA to their chemotherapy regimen.69

Figure 5. NPM1 mutation is identified in genomic DNA from four cases of
AML by amplification of a segment of exon 12 followed by sizing of the
amplicons using capillary electrophoresis. Amplicons representing the
normal, wild-type allele are 267 � 1 bp in length, while abnormal
amplicons are usually 4 bp larger, consistent with insertional mutation in
the leukemic cell DNA.

Table 3. Prognostic Genetic Characteristics in Acute Myeloid
Leukemia

Favorable risk factors
t(15;17)(q22;q12) PML-RARA
t(8;21)(q22;q22) RUNX1-RUNX1T1
inv(16)(p13;q22) or t(16;16)(p13;q22) CBFB-MYH11
NPM1 mutation when FLT3 internal tandem duplication

is absent and cytogenetics are normal
CEBPA mutation (correlates with erythroid

differentiation and higher hemoglobin)
Intermediate risk group

Normal karyotype*
FLT3 internal tandem duplication with NPM1 mutation

and normal cytogenetics
KIT mutation with t(8;21) or inv(16)
�8 only
t(9;11) AF9-MLL only
Abnormalities not otherwise listed

Unfavorable risk factors
Complex karyotype (�3 abnormalities)
Monosomal karyotype (�2 autosomal monosomies, or

a single one plus �1 structural defect)
�5, �7 or other autosomal monosomy
del(5q) or del(7q)
11q23 MLL translocation, excluding t(9;11) AF9-MLL
MLL partial tandem duplication with normal

cytogenetics
inv(3)(q21;q26) or t(3;3)(q21;q26) RPN1-EVI1 or

MDS1-EVI1
EVI1 overexpression
17p abnormality or TP53 mutation
FLT3 internal tandem duplication when NPM1 mutation

is absent and cytogenetics are normal
t(9;22)(q34;q11) BCR-ABL1
t(6;9)(p23;q34) DEK-CAN
ERG overexpression without FLT3 ITD when

cytogenetics are normal
BAALC overexpression with normal cytogenetics
MN1 overexpression with normal cytogenetics
WT1 mutation with normal cytogenetics
TET2 mutation

Prognostic categorization may vary by analytic method, patient
population, study design, and other variables.

*Loss of X or Y chromosome is not considered an abnormality for
purposes of prognosis.

Figure 4. FLT3 internal tandem duplication is identified in genomic DNA that
has been amplified across exons 14 and 15 using PCR and then sized by
capillary electrophoresis. Amplicons representing the wild-type allele are 325
bp in length (circled in black). In each of three AML cases, a larger amplicon
is also seen (circled in red), consistent with FLT3 internal tandem duplication
in the leukemic cells.
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Laboratory testing for NPM1 mutation typically relies
on PCR followed by capillary electrophoresis to detect a
small insertion in one allele in exon 1270 (Figure 5). Alter-
native molecular methods are feasible.12,71,72 At least 40
molecular variants exist, most of which result in a 4-bp
enlargement, although rarely an amplicon up to 11 bp
larger than normal is seen. Frameshift mutations inter-
fere with the nucleolar localization motif in the C-termi-
nal end of the protein. Mislocalized NPM1 protein can
often be visualized using immunohistochemistry except in
blasts having scant cytoplasm. Molecular testing for NPM1
mutation is a reasonable alternative to immunohistochem-
istry when one considers that interpretation of NPM1 results
is usually done in conjunction with FLT3 results, and FLT3 is
tested using molecular methods.

In adult AML, type A NPM1 mutation (a 4-base TCTG
duplication) comprises three quarters of mutated cases,
while two alternate 4-bp insertions at the same position
(type B is CATG, and type D is CCTG) comprise an
additional 15% of mutated cases. Type B insertion is
more common in children. Each of these common vari-
ants has been targeted using allele-specific amplification
to detect minimal residual disease and to predict re-
lapse.73–75 Unfortunately, lack of the mutation in 10% of
relapsed AML patients limits the reliability of these allele-
specific assays for monitoring tumor burden over time.73

CCAAT/Enhancer Binding Protein � (CEBPA)
Mutation Confers a Better Prognosis

“AML with a mutated CEBPA gene” is a provisional cat-
egory of the World Health Organization classification
comprising 17% of cytogenetically normal AML. CEBPA
mutation is a favorable prognostic indicator when it is
biallelic and when it occurs in isolation of other prognos-
tic genetic defects.76–78 Moreover, CEBPA mutation por-
tends a better prognosis than does wild-type CEBPA in
AMLs with FLT3 ITD.78 Despite the absence of FLT3 ITD,
the subset of patients with so called “triple negative”
results (negative for CEBPA mutation, NPM1 mutation,
and FLT3 ITD) do poorly and may be considered for
allogeneic transplant.54

CEBPA can be silenced by either mutation or by pro-
moter hypermethylation, 76,79 implying that DNA sequenc-
ing in combination with methylation analysis is required to
capture all of the relevant prognostic information. CEBPA
encodes a transcription factor important in neutrophil differ-
entiation. Mutation down-regulates HOX gene expression
leading to decreased expression of myeloid differentiation
factors, induction of miR181, and increased expression of
erythroid differentiation genes leading to elevated hemoglo-
bin.80,81 There is slow uptake of CEBPA testing, in part
because rather extensive sequencing andmethylation anal-
ysis is required to detect the relevant defects.

ERG, BAALC, WT1, EVI1, MN1, microRNA, and
Integrated Panels of Prognostic Factors

In addition to the gene rearrangements and mutations
described so far, transcriptional dysregulation of se-

lected genes (eg, ERG, BAALC, WT1, EVI1, MN1, miR181)
seems to confer prognostic information.51,82 For exam-
ple, EVI1 overexpression in AML (or rearrangement of the
EVI1 gene on 3q26) is associated with lack of response to
current treatments and a dismal prognosis.82

Applying a large panel of microRNAs reveals patterns
of expression that are associated with outcome in AML.80

The microRNA signature has been purported to add
prognostic value beyond what is achievable with FLT3
and NPM1 testing. A panel of just seven microRNAs
could distinguish the major karyotypic categories of
AML.83 A panel of 12 microRNAs can divide cytogeneti-
cally normal AML into poor and intermediate risk catego-
ries independently of FLT3 ITD.84

The list of prognostic factors seems to be growing
rapidly, making it difficult to discern which prognostic
factors are independent of the others, and which panel of
tests to perform in a given patient. Prognostic factors are
most useful when they impact on therapeutic response, in
other words, when they are predictive of outcome.54,55 It
would be helpful to have a tiered algorithm for ordering
various genetic tests based on cost effectiveness data in
various clinical scenarios that account for the available
therapeutic options (eg, stem cell transplant). Alas, long
lists of putative prognostic tests and therapeutic regi-
mens, combined with a paucity of clinical trial data for
various settings, render it difficult to achieve international
consensus on a testing algorithm. A useful integrated
predictor has recently been proposed by Dutch/Belgian/
Swiss investigators that relies on combined FLT3, NPM1,
ERG, CEBPA, and BAALC genotypes to place patients
into one of four groups with respect to the risks and
benefits of stem cell transplantation.85

Predictive Applications of Genetic Technologies

KIT Mutation and Drug Responsiveness

KIT is a receptor tyrosine kinase that functions in normal
hematopoiesis. Gain of function mutations in KIT have
been found in 2% of AML overall and in a third of the
“core binding factor” leukemias �AML with t(8;21) or
inv(16)�, as well as in systemic mastocytosis and several
non-hematopoietic malignancies.86 KIT mutation (espe-
cially D816V encoded by exon 17) is associated with a
worse prognosis in AML with t(8;21) RUNX1-RUNX1T1,
in contrast to the good prognosis normally associated
with t(8;21).20 Some KIT-mutated malignancies re-
spond to tyrosine kinase inhibitors, although response
depends on the type of KIT mutation and on the mech-
anism and site of action of the drug.87 A number of
tyrosine kinase inhibitors such as imatinib, dasatinib,
and PKC412 are being tested for efficacy against KIT-
mutated AML.88

KIT mutation is generally detected by sequencing
exons 8 and 17 in leukemic cells. Alternatively, allele-
specific PCR can detect exon 17 D816V, the most
relevant mutation in AML.89
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RAS Mutation and Drug Responsiveness

Among the RAS family of genes, NRAS and KRAS are
more frequently mutated in AML than is HRAS.90 Overall,
RAS mutation is present in about 15% of AMLs and is
enriched for in cases having inv(16) or inv(3).91,92 RAS
mutation may enhance response to high dose cytara-
bine,54,93 while response to a farnesyl transferase inhib-
itor (tipifarnib, a drug that shuts down activated RAS) was
predicted by the RASGRP1 to APTX gene expression
ratio.94

Emerging Array Technologies

Microarray-Based Gene Expression Profiles

As the list of prognostic and predictive tests becomes
longer, it is reasonable to consider whether massive par-
allel transcriptional analysis might be more cost effective
than panels of disparate ancillary methods (eg, karyo-
type, FISH, mutational analysis, immunophenotype). Gene
expression profiling uses arrays to detect and semiquan-
tify expression of all �25,000 human genes at once.
Smaller or custom arrays can be created to order. The
microarray method requires extracting RNA from a fresh
or frozen specimen containing a high proportion of ma-
lignant cells to identify patterns of gene expression that
are characteristic of prognostic or predictive subsets of
disease. Distinct profiles are seen in most AML catego-
ries of clinical importance, such as t(8;21), t(15;17),
inv(16), and the monocytic subclasses.95–98 CEBPA mu-
tation or methylation-related silencing has a distinct pro-
file, highlighting the ability of arrays to detect both ge-
netic and epigenetic forms of CEBPA dysfunction. Not
surprisingly, the group of AMLs with a complex karyotype
lacks a distinct profile, in keeping with the diversity of the
genetic defects comprising complex karyotypes. Inter-
estingly, NPM1 and FLT3 defects are not readily identi-
fied by array signatures, suggesting that mutational ef-
fects are diverse or else the same effects are seen in
non-mutated cases.97

Once validated, it is likely that expression profiles will
be used for patient care, either in place of traditional
assays or to select the next round of ancillary tests that
are most appropriate for managing that patient initially
and after treatment when residual disease testing is rel-
evant. Novel array-based prognostic algorithms have
been proposed. In one study of adult AML, a 133-gene
algorithm predicted survival independent of the usual
clinical predictors.99 In another study, 86 probes target-
ing 66 genes yielded a prognostic score that was inde-
pendent of FLT3 and NPM1 status in cytogenetically nor-
mal AML.100 MicroRNA signatures are also informative
and may complement mRNA signatures in classifying
AML and predicting outcome.95,98,101,102 It is likely that
array signatures will be interpreted in combination with
more traditional clinical data (eg, age, cell counts) and
independent prognostic factors. Expression profiling
does not currently have a role in monitoring residual
disease; however, this does not exclude a role for ex-
pression profiles in monitoring response to treatment.

Microarray-Based Gene Copy Number Variants
and Whole-Genome Sequencing

While normal cells have two copies of every gene (one
inherited maternally and the other paternally), many
AMLs have fewer or more copies of a given gene, of a
whole chromosome, or of an intermediate sized region.
While karyotype can detect large additions or deletions,
array technology can, depending on the design of the
probes and their density, detect smaller copy number
changes and even point mutations or segmental unipa-
rental disomy. Uniparental disomy can result in duplica-
tion of a mutated locus while the normal locus on the
other allele is lost, causing copy neutral loss of heterozy-
gosity with the potential for complete alteration of gene
function.

Copy number variation studies show that AMLs contain
many alterations that were occult by traditional karyotype.
Even balanced translocations are often identifiable based
on subtle hybridization variation at the breakpoints in DNA
(or in fusion transcripts).103–105 Identification of microdele-
tions or duplications, as well as cryptic translocations, may
add value when interpreted in combination with results of
traditional metaphase cytogenetics.106

Full-genome sequencing is now feasible and may re-
veal novel factors responsible for tumor initiation and
progression. Full-genome sequencing of an AML showed
10 acquired mutations, two in known AML-related genes
and another eight that were unexpected.107 Full genomic
or exonic sequencing is considered a discovery tool at
this time, but more targeted sequencing or SNP arrays
approaches may be useful for finding druggable path-
ways and markers for monitoring tumor burden.

A Practical Approach to Specimen Allocation
and Testing

Given the ever-expanding panels of tests now available,
it is timely and important to describe a rational approach
to ordering genetic tests at initial diagnosis and in follow-
up. For any marrow suspected of harboring AML, karyo-
type must be done up front.26 If the karyotype is normal,
but morphology and immunophenotype suggest one of
the prognostically favorable karyotypes, FISH or rtPCR
should be done to detect cryptic rearrangement of the
relevant locus. This genetic workup is considered suffi-
cient for initial therapeutic decision-making.26 Additional
testing to refine prognosis is useful for decision-making at
the time of first remission or relapse.108–111

Normal karyotype AML patients may benefit from an
additional panel of prognostic tests (eg, FLT3 ITD, NPM1
mutation) to assist with downstream clinical decisions
such as whether to prioritize transplant in first remis-
sion.54,109–111 Activating KIT mutation (exons 8 or 17)
negatively influences prognosis in t(8;21) cases, but oth-
erwise such patients tend to do well with standard high-
dose ARA-C-containing consolidation regimens and are
not considered candidates for allogeneic transplant in
first remission.20 In unfavorable prognosis AML, the ben-
efits of allogeneic transplant may outweigh the risks.109,110
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The Dutch-Belgian-Swiss clinical trial experience in
adults under age 60 was recently summarized in the
context of risk categorization using modern panels of
cytogenetic and molecular tests.85,108

Tumor burden can be monitored over time if the ma-
lignant clone has a distinct feature that can be accurately
and sensitively measured in blood or marrow.26,112 Fu-
sion transcripts, antigen receptor gene rearrangement,
and point mutation are examples of these biomarkers.
Figure 6 shows the relative sensitivity of various detection
methods. Amplification assays can often detect very rare
tumor cells in a specimen containing upwards of 100,000
normal cells, permitting relapse to be predicted well be-
fore the patient becomes symptomatic.9–11 Early detec-
tion and treatment of relapsing disease restricts the num-
ber of cell divisions and thus limits the risk for secondary
genetic hits that might render the tumor less responsive
to therapy.

A positive molecular test may be the first sign of im-
pending relapse. A negative test result can be inter-
preted with certainty only when the test is known to detect
a valid tumor marker for that patient. Therefore, it is wise
to assess tumor markers upfront when the tumor is abun-
dant. A cost-effective alternative is to save residual leu-
kemic specimens for later testing. Assuring proper han-
dling and storage of specimens is critical.

Specimen Collection and Storage

The best available specimen should be used for genetic
analysis. Fresh marrow or blood should be collected and

handled according to the testing laboratory’s recommen-
dations. While heparin is the preferred anticoagulant for
cytogenetics, heparin can interfere with DNA amplifica-
tion, so EDTA is preferred for PCR and rtPCR-based
assays. Processing for cytogenetics should be initiated
as soon as possible, preferably within 24 hours of collec-
tion. Any residual cells remaining after karyotype can be
stored for further analysis once the karyotype is known.
These leftover cells are typically fixed in Carnoy’s solution
(methanol and acetic acid) and refrigerated to preserve
target analytes for FISH or rtPCR.

Smears and touch preparations are amenable to inter-
phase FISH, and these may be air dried and saved
unstained at 4°C for several weeks before analysis, thus
allowing for completion of morphological, immunopheno-
typic, and karyotype studies before ordering FISH. Al-
though interphase FISH can be done on paraffin sec-
tions, smear and touch preparations containing single
layers of whole nuclei are more readily interpreted com-
pared with paraffin sections where parts of nuclei are
often missing.

It should be emphasized that virtually all PCR-based
assays are more robust when applied to fresh or frozen
cells as compared with fixed cells, since formalin-medi-
ated cross-linking renders nucleic acid less amenable to
hybridization. Formalin preservation, although not ideal,
is preferred over B5 and other mercury-based fixatives.
Decalcification results in acid-mediated degradation of
nucleic acid, so clot sections are preferred over decalci-
fied biopsy sections.

RNA is a particularly labile molecule, so handling
specifications should be strictly followed and specimens
should be delivered promptly to the testing laboratory.
Tests for minimal residual disease, whether they target
DNA or RNA, require special care to prevent degradation
before analysis. As a check on specimen quality, test
results are interpreted in conjunction with results of a
control assay demonstrating amplifiable housekeeping
DNA or cDNA, as appropriate.

A summary of acceptable specimen types for various
molecular tests is shown in Table 4. While PCR is typically
used to detect point mutations and small duplications or
insertions (eg, NPM1 mutation or FLT3 ITD) in extracted
DNA, rtPCR is typically used to detect fusion transcripts
representing translocations or inversions in extracted
RNA. The optimal strategy for designing an assay relies
on a thorough understanding of the relevant technolo-
gies, specimen types and handling parameters, genetic

Figure 6. Genetic and phenotypic abnormalities that are unique to the tumor
provide a marker by which to measure tumor burden. Up to a billion
leukemic cells remain in a patient who is in hematological (morphological)
remission. Sensitive assays can detect and measure residual disease to permit
early intervention when tumor burden is rising.

Table 4. Tissue Requirements for Genetic Tests

Laboratory procedure Recommended sample types

Karyotype Heparinized marrow aspirate (preferred) or blood or fresh biopsy
FISH Fresh cells for metaphase analysis; for interphase analysis,

alcohol-fixed cells, smears, touch preparations, or formalin-fixed,
non-decalcified tissue sections

Southern blot analysis, gene expression array, rtPCR Fresh blood or marrow (EDTA), frozen nucleated cell pellet, frozen
tissue

PCR, DNA sequencing, CGH array, microRNA Fresh blood, marrow aspirate, or body fluid; frozen or
paraffin-embedded tissue

Refer to collection and handling requirements for each assay in each testing laboratory.
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target(s), and intended use of the assay. Guidelines for
assay validation were recently published.113

Reporting and Quality Assurance of Genetic
Tests

College of American Pathologists’ recommendations for
reporting molecular test results include specifying the
technology used and the gene targets.114 To ensure that
everyone uses the same term for a given gene, the Gene
Nomenclature Committee of the Human Gene Organiza-
tion has developed a database of the name and symbol
for each gene, searchable at http://www.genenames.org
(accessed July 14, 2009). Cytogenetic nomenclature
rules are used to designate karyotype and FISH findings,
while nucleotide-level alterations are described in com-
parison with a reference sequence.114 So that reports
may be deciphered by a general physician, a written
explanation of the results and their clinical significance is
essential. A molecular genetics pathologist is well suited
to interpret and convey results by virtue of expertise in the
relevant technologies as applied to diagnosis, prognosis,
and prediction.

Molecular results should be interpreted in conjunction
with morphological and clinical information to maximize
the value for clinical decision-making.114 The 2008 World
Health Organization book states, “because of the multi-
disciplinary approach required to diagnose and classify
myeloid neoplasms it is recommended that the various
diagnostic studies be correlated with the clinical findings
and reported in a single, integrated report.”1 This synthe-
sis is typically done by the consulting hematopathologist
at initial diagnosis. In follow-up specimens, the ordering
physician (whether the clinician or consulting pathologist)
assures that testing is medically necessary and that re-
sults are synthesized with relevant clinicopathologic find-
ings. Molecular pathologists and other physicians over-
seeing laboratory testing are responsible for assisting
with test selection, interpreting results, and assuring
quality and relevance of laboratory work.

Heritable Syndromes Predisposing to AML

Inherited predisposition to AML should be considered in
patients having a strong family history of cancer (Table
5). The heritable defect often involves a DNA repair pro-
tein, in which case affected patients should minimize
exposure to radiation and chemotherapeutic drugs that
induce DNA damage. Therapy-related leukemia is asso-
ciated with heritable polymorphisms in drug metabolizing
enzymes such as glutathione-S-transferase M1 or T1,
N-acetyl transferase 2, quinone oxoreductase, or cyto-
chrome p450 (CYP1A1).115

Interestingly, studies of families inflicted with multiple
myeloid malignancies uncovered rare instances of germ-
line defects in CEBPA or RUNX1, the same genes that are
somatically altered in some leukemias.116 The 2008
World Health Organization classification system includes
a new category designated as “myeloid leukemia asso-
ciated with Down syndrome,” defining a group of tumors
with distinct clinicopathologic correlates (eg, frequent
GATA1 mutation) and altered prognosis compared with
sporadic leukemia.

Summary and Future Directions

Genetic technologies are powerful ancillary tools for diag-
nosing, classifying, and managing acute leukemia. Over
150 different recurrent lesions have been described in AML,
and dozens of these influence patient management. The
Association for Molecular Pathology Test Directory (http://
www.amptestdirectory.org/, accessed July 14, 2009) dis-
plays information about testing laboratories, and the follow-
ing websites (accessed July 14, 2009) also contain reliable
information linking cancer genotype and phenotype: http://
atlasgeneticsoncology.org (Atlas of Genetics & Cytogenetics
in Oncology & Hematology); http://www.ncbi.nlm.nih.gov/
Literature/index.html (medical literature); http://www.ncbi.
nlm.nih.gov/sites/entrez?db	cancerchromosomes (can-
cer genetics database of the National Center for
Biotechnology Information). On the horizon are pharma-
cogenetic tests estimating likelihood of response to spe-

Table 5. Genetic Predisposition to Acute Myeloid Leukemia

Heritable syndrome Gene symbol Gene name Locus

Fanconi anemia A FANCA Fanconi anemia, complementation group A 16q24.3
Fanconi anemia C FANCC Fanconi anemia, complementation group C 9q22.3
Fanconi anemia D2 FANCD2 Fanconi anemia, complementation group D2 3p26
Fanconi anemia E FANCE Fanconi anemia, complementation group E 6p21-p22
Fanconi anemia F FANCF Fanconi anemia, complementation group F 11p15
Fanconi anemia G FANCG Fanconi anemia, complementation group G 9p13
Fanconi anemia J BRIP1 BRCA1 interacting protein C-terminal helicase 1 17q22
Fanconi anemia N PALB2 Partner and localizer of BRCA2 16p12.1
Familial AML CEBPA CCAAT/enhancer binding protein (C/EBP), alpha 19q13.1
Familial platelet disorder with propensity to AML RUNX1 Runt-related transcription factor 1 21q22.3
Schwachman-Diamond SBDS Schwachman-Bodian-Diamond syndrome protein 7q11
Bloom BLM Bloom syndrome 15q26.1
Li-Fraumeni TP53 Tumor protein p53 17p13
Down trisomy 21
Ataxia telangiectasia ATM Ataxia telangiectasia mutated 11q22.3
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cific therapy based on knowledge of a patient’s germline
and/or leukemic genotype. Arrays evaluating dozens to
thousands of analytes, when applied to RNA, can survey
numerous biochemical pathways by assaying panels of
transcripts or miRNAs. When applied to DNA, arrays can
simultaneously detect mutations, deletions or amplifica-
tions, epigenetic changes, and sometimes even bal-
anced translocations. Prediction scores will emerge as
cost-effective strategies for managing reams of disparate
clinical and laboratory information. Array results may sug-
gest which additional ancillary test to perform for pur-
poses of identifying a tumor marker to track over time.
Finally, arrays hold promise for unraveling the complexity
of tumor heterogeneity in a way that drives development
of novel therapies and companion assays to predict and
track therapeutic efficacy. Classification schemes will re-
group patients based on improved understanding of patho-
biology and shared response to given interventions. Sensi-
tive genetic tests will evaluate the success of therapy and
trigger further intervention when relapse is imminent.
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