79 research outputs found

    Genome-wide analysis of poly(A) site selection in schizosaccharomyces pombe,

    Get PDF
    Polyadenylation of pre-mRNAs, a critical step in eukaryotic gene expression, is mediated by cis elements collectively called the polyadenylation signal. Genome-wide analysis of such polyadenylation signals was missing in fission yeast, even though it is an important model organism. We demonstrate that the canonical AATAAA motif is the most frequent and functional polyadenylation signal in Schizosaccharomyces pombe. Using analysis of RNA-Seq data sets from cells grown under various physiological conditions, we identify 3′ UTRs for nearly 90% of the yeast genes. Heterogeneity of cleavage sites is common, as is alternative polyadenylation within and between conditions. We validated the computationally identified sequence elements likely to promote polyadenylation by functional assays, including qRT-PCR and 3′RACE analysis. The biological importance of the AATAAA motif is underlined by functional analysis of the genes containing it. Furthermore, it has been shown that convergent genes require trans elements, like cohesin for efficient transcription termination. Here we show that convergent genes lacking cohesin (on chromosome 2) are generally associated with longer overlapping mRNA transcripts. Our bioinformatic and experimental genome-wide results are summarized and can be accessed and customized in a user-friendly database Pomb(A)

    The Cohesin loading factor NIPBL recruits histone deacetylases to mediate local chromatin modifications

    Get PDF
    Cornelia de Lange Syndrome (CdLS) is a rare congenital malformation disorder. About half of the patients with CdLS carry mutations in the NIPBL gene encoding the NIPBL protein, a subunit of the Cohesin loading complex. Recent studies show association of Cohesin with chromatin-remodeling complexes, either by establishing cohesion or by recruiting Cohesin to specific chromosome locations. In yeast two-hybrid assays, we identified an interaction of NIPBL with the histone deacetylases -1 and -3. These interactions were confirmed in mammalian cells by coimmunoprecipitation and a critical region for interaction was defined to a stretch of 163 amino acids of a highly conserved region of NIPBL, which is mutated in patients with CdLS. Utilizing reporter gene assays, we could show that NIPBL fused to the GAL4-DNA-binding domain (GAL4-DBD) represses promoter activity via the recruitment of histone deacetylases. Interestingly, this effect is dramatically reduced by both NIPBL missense mutations identified in CdLS and by chemical inhibition of the histone deacetylases. Our data are the first to indicate a molecular and functional connection of NIPBL with chromatin-remodeling processes via the direct interaction with histone deacetylases

    The Prevalence and Regulation of Antisense Transcripts in Schizosaccharomyces pombe

    Get PDF
    A strand-specific transcriptome sequencing strategy, directional ligation sequencing or DeLi-seq, was employed to profile antisense transcriptome of Schizosaccharomyces pombe. Under both normal and heat shock conditions, we found that polyadenylated antisense transcripts are broadly expressed while distinct expression patterns were observed for protein-coding and non-coding loci. Dominant antisense expression is enriched in protein-coding genes involved in meiosis or stress response pathways. Detailed analyses further suggest that antisense transcripts are independently regulated with respect to their sense transcripts, and diverse mechanisms might be potentially involved in the biogenesis and degradation of antisense RNAs. Taken together, antisense transcription may have profound impacts on global gene regulation in S. pombe

    Glomerulocystic kidney disease

    Get PDF
    Glomerulocystic disease is a rare renal cystic disease with a long descriptive history. Findings from recent studies have significantly advanced the pathophysiological understanding of the disease processes leading to this peculiar phenotype. Many genetic syndromes associated with glomerulocystic disease have had their respective proteins localized to primary cilia or centrosomes. Transcriptional control of renal developmental pathways is dysregulated in obstructive diseases that also lead to glomerulocystic disease, emphasizing the importance of transcriptional choreography between renal development and renal cystic disease

    Endogenous mouse Dicer is an exclusively cytoplasmic protein

    Get PDF
    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse

    Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe

    Get PDF
    Eukaryotic genomes are folded into three-dimensional structures, such as self-associating topological domains, the borders of which are enriched in cohesin and CCCTC-binding factor (CTCF) required for long-range interactions1-7. How local chromatin interactions govern higher-order folding of chromatin fibers and the function of cohesin in this process remain poorly understood. Here we perform genome-wide chromatin conformation capture (Hi-C) analysis8 to explore the high-resolution organization of the Schizosaccharomyces pombe genome, which despite its small size exhibits fundamental features found in other eukaryotes9. Our analyses of wild type and mutant strains reveal key elements of chromosome architecture and genome organization. On chromosome arms, small regions of chromatin locally interact to form “globules”. This feature requires a function of cohesin distinct from its role in sister chromatid cohesion. Cohesin is enriched at globule boundaries and its loss causes disruption of local globule structures and global chromosome territories. By contrast, heterochromatin, which loads cohesin at specific sites including pericentromeric and subtelomeric domains9-11, is dispensable for globule formation but nevertheless affects genome organization. We show that heterochromatin mediates chromatin fiber compaction at centromeres and promotes prominent interarm interactions within centromere-proximal regions, providing structural constraints crucial for proper genome organization. Loss of heterochromatin relaxes constraints on chromosomes, causing an increase in intra- and inter-chromosomal interactions. Together, our analyses uncover fundamental genome folding principles that drive higher-order chromosome organization crucial for coordinating nuclear functions

    Understanding non-coding DNA regions in yeast.

    No full text
    Non-coding transcripts play an important role in gene expression regulation in all species, including budding and fission yeast. Such regulatory transcripts include intergenic ncRNA (non-coding RNA), 5' and 3' UTRs, introns and antisense transcripts. In the present review, we discuss advantages and limitations of recently developed sequencing techniques, such as ESTs, DNA microarrays, RNA-Seq (RNA sequencing), DRS (direct RNA sequencing) and TIF-Seq (transcript isoform sequencing). We provide an overview of methods applied in yeast and how each of them has contributed to our knowledge of gene expression regulation and transcription

    Understanding non-coding DNA regions in yeast.

    No full text
    Non-coding transcripts play an important role in gene expression regulation in all species, including budding and fission yeast. Such regulatory transcripts include intergenic ncRNA (non-coding RNA), 5' and 3' UTRs, introns and antisense transcripts. In the present review, we discuss advantages and limitations of recently developed sequencing techniques, such as ESTs, DNA microarrays, RNA-Seq (RNA sequencing), DRS (direct RNA sequencing) and TIF-Seq (transcript isoform sequencing). We provide an overview of methods applied in yeast and how each of them has contributed to our knowledge of gene expression regulation and transcription

    Noncanonical functions of microRNA pathway enzymes – Drosha, DGCR8, Dicer and Ago proteins

    No full text
    MicroRNAs (miRNAs) are small regulatory noncoding RNAs that are generated in the canonical RNA interference (RNAi) pathway. Drosha, DiGeorge syndrome critical region 8 (DGCR8) and Dicer are key players in miRNA biogenesis. Argonaute (Ago) proteins bind to miRNAs and are guided by them to find messenger RNA targets and carry out post‐transcriptional silencing of protein‐coding genes. Recently, emerging evidence suggests that RNAi factors have a range of noncanonical functions that are beyond miRNA biogenesis. These functions pertain to various biological processes, such as development, transcriptional regulation, RNA processing and maintenance of genome integrity. Here, we review recent literature reporting miRNA‐independent, noncanonical functions of Drosha, DGCR8, Dicer and Ago proteins and discuss the importance of these functions
    corecore