43 research outputs found

    Gemcitabine and Arabinosylcytosin Pharmacogenomics: Genome-Wide Association and Drug Response Biomarkers

    Get PDF
    Cancer patients show large individual variation in their response to chemotherapeutic agents. Gemcitabine (dFdC) and AraC, two cytidine analogues, have shown significant activity against a variety of tumors. We previously used expression data from a lymphoblastoid cell line-based model system to identify genes that might be important for the two drug cytotoxicity. In the present study, we used that same model system to perform a genome-wide association (GWA) study to test the hypothesis that common genetic variation might influence both gene expression and response to the two drugs. Specifically, genome-wide single nucleotide polymorphisms (SNPs) and mRNA expression data were obtained using the Illumina 550K® HumanHap550 SNP Chip and Affymetrix U133 Plus 2.0 GeneChip, respectively, for 174 ethnically-defined “Human Variation Panel” lymphoblastoid cell lines. Gemcitabine and AraC cytotoxicity assays were performed to obtain IC50 values for the cell lines. We then performed GWA studies with SNPs, gene expression and IC50 of these two drugs. This approach identified SNPs that were associated with gemcitabine or AraC IC50 values and with the expression regulation for 29 genes or 30 genes, respectively. One SNP in IQGAP2 (rs3797418) was significantly associated with variation in both the expression of multiple genes and gemcitabine and AraC IC50. A second SNP in TGM3 (rs6082527) was also significantly associated with multiple gene expression and gemcitabine IC50. To confirm the association results, we performed siRNA knock down of selected genes with expression that was associated with rs3797418 and rs6082527 in tumor cell and the knock down altered gemcitabine or AraC sensitivity, confirming our association study results. These results suggest that the application of GWA approaches using cell-based model systems, when combined with complementary functional validation, can provide insights into mechanisms responsible for variation in cytidine analogue response

    Metabolic changes in concussed American football players during the acute and chronic post-injury phases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite negative neuroimaging findings many athletes display neurophysiological alterations and post-concussion symptoms that may be attributable to neurometabolic alterations.</p> <p>Methods</p> <p>The present study investigated the effects of sports concussion on brain metabolism using <sup>1</sup>H-MR Spectroscopy by comparing a group of 10 non-concussed athletes with a group of 10 concussed athletes of the same age (mean: 22.5 years) and education (mean: 16 years) within both the acute and chronic post-injury phases. All athletes were scanned 1-6 days post-concussion and again 6-months later in a 3T Siemens MRI.</p> <p>Results</p> <p>Concussed athletes demonstrated neurometabolic impairment in prefrontal and motor (M1) cortices in the acute phase where NAA:Cr levels remained depressed relative to controls. There was some recovery observed in the chronic phase where Glu:Cr levels returned to those of control athletes; however, there was a pathological increase of m-I:Cr levels in M1 that was only present in the chronic phase.</p> <p>Conclusions</p> <p>These results confirm cortical neurometabolic changes in the acute post-concussion phase as well as recovery and continued metabolic abnormalities in the chronic phase. The results indicate that complex pathophysiological processes differ depending on the post-injury phase and the neurometabolite in question.</p

    Inner Mitochondrial Translocase Tim50 Is Central in Adrenal and Testicular Steroid Synthesis

    No full text

    Ventricular enlargement due to acute hypernatremia in a patient with a ventriculoperitoneal shunt

    No full text
    Patients requiring CSF shunts frequently have comorbidities that can influence water and electrolyte balances. The authors report on a case involving a ventriculoperitoneal shunt in a patient who underwent intravenous hyperhydration and withdrawal of vasopressin substitution prior to scheduled high-dose chemotherapy regimen for a metastatic suprasellar germinoma. After acute neurological deterioration, the patient underwent CT scanning that demonstrated ventriculomegaly. A shunt tap revealed no flow and negative opening pressure. Due to suspicion of proximal shunt malfunction, the comatose patient underwent immediate surgical exploration of the ventricle catheter, which was found to be patent. However, acute severe hypernatremia was diagnosed during the procedure. After correction of the electrolyte disturbances, the patient regained consciousness and made a good recovery. Although rare, the effects of acute severe hypernatremia on brain volume and ventricular size should be considered in the differential diagnosis of ventriculoperitoneal shunt failure

    Molecular signature of late-stage human ALS revealed by expression profiling of postmortem spinal cord gray matter

    No full text
    Little is known about global gene expression patterns in the human neurodegenerative disease amyotrophic lateral sclerosis (ALS). To address this, we used high-density oligonucleotide microarray technology to compare expression levels of similar to6,800 genes in postmortem spinal cord gray matter obtained from individuals with ALS as well as normal individuals. Using Fisher discriminant analysis (FDA) and leave-one-out cross-validation (LOOCV), we discerned an ALS-specific signature. Moreover, it was possible to distinguish familial ALS (FALS) from sporadic ALS (SALS) gene expression profiles. Characterization of the specific genes significantly altered in ALS uncovered a pro-inflammatory terminal state. Moreover, we found alterations in genes involved in mitochondrial function, oxidative stress, excitotoxicity, apoptosis, cytoskeletal architecture, RNA transcription and translation, proteasomal function, and growth and signaling. It is apparent from this study that DNA microarray analysis and appropriate bioinformatics can reveal distinct phenotypic changes that underlie the terminal stages of neurodegeneration in ALS.X119094sciescopu
    corecore