4 research outputs found
Low blood levels of LRG1 before radical prostatectomy identify patients with high risk of progression to castration-resistant prostate cancer
Background
After radical prostatectomy (RP), depending on stage, up to 40% of patients with prostate cancer (PCa) will experience biochemical failure (BF). Despite salvage therapy, approximately one-third of these patients will need permanent hormone therapy (pHT) and are at risk of progression to castration-resistant PCa (CRPC). Prognostic markers herald the need for neoadjuvant, adjuvant, or multimodal treatment.
Objective
To evaluate the added value of blood LRG1 in predicting treatment failure in patients who have undergone radical prostatectomy (RP).
Design, setting, and participants
We quantified LRG1 in serum or plasma sampled before radical prostatectomy from patients from the Martini-Klinik (Martini; n = 423), the Danish CuPCa cohort (CuPCa; n = 182), and Oslo University Hospital (OUH; n = 145).
Outcome measurements and statistical analysis
The endpoints were BF, pHT, and CRPC. The association between LRG1 and survival outcomes was evaluated using Kaplan-Meier estimation and Cox proportional-hazards modeling. The added predictive value of LRG1 in nested models was estimated using the concordance index, time-dependent area under the receiver operating characteristic curve, and decision curve analysis.
Results and limitations
In multivariable Cox models using preoperative characteristics, LRG1 was associated with an estimated lower risk of BF in the Martini cohort (adjusted hazard ratio [aHR] 0.68, 95% confidence interval [CI] 0.52–0.90) and in the CuPCa cohort (aHR 0.47, 95% CI 0.30–0.73). Using preoperative prognostic variables, our data showed that doubling of LRG1 was also associated with a lower risk of pHT receipt in the CuPCa cohort (aHR 0.43, 95% CI 0.20–0.93) and of CRPC development in the OUH cohort (aHR 0.32, 95% CI 0.15–0.69). Similar aHR values were observed using either preoperative or postoperative variables for all endpoints.
Conclusions
PCa patients with high blood LRG1 are at lower risk of BF, pHT receipt, and progression to CRPC. Since LRG1 adds value to established prognostic models, new prognostic factor combinations including LRG1 should be considered in future studies.
Patient summary
We measured concentrations of the blood-based protein LRG1 before surgery for prostate cancer. Patients with high LRG1 levels had better disease-free survival, suggesting that LRG1 can help in predicting prognosis
The β2-adrenergic receptor is a molecular switch for neuroendocrine transdifferentiation of prostate cancer cells
The incidence of treatment-related neuroendocrine (NE) prostate cancer (t-NEPC) is rising as more potent drugs targeting the androgen signaling axis are clinically implemented. Neuroendocrine transdifferentiation (NEtD), an putative initial step in t-NEPC development, is induced by androgen deprivation therapy (ADT) or anti-androgens, and by activation of the β2-adrenergic receptor (ADRB2) in prostate cancer cell lines. Thus, understanding whether ADRB2 is involved in ADT-initiated NEtD may assist in developing treatment strategies that can prevent or reverse t-NEPC emergence, thereby prolonging therapeutic responses. Here we found that in primary, treatment-naïve prostate cancers, ADRB2 mRNA was positively correlated with expression of luminal differentiation markers, and ADRB2 protein levels were inversely correlated with Gleason grade. ADRB2 mRNA was upregulated in metastatic prostate cancer, and progressively downregulated during androgen deprivation therapy (ADT) and t-NEPC emergence. In androgen-deprivated medium, high ADRB2 was required for LNCaP cells to undergo NEtD, measured as increased neurite outgrowth and expression of neuron differentiation and NE genes. ADRB2 overexpression induced an NE-like morphology in both AR positive and -negative prostate cancer cell lines. ADRB2 downregulation in LNCaP cells increased canonical Wnt signaling, and GSK3α/β inhibition reduced the expression of neuron differentiation and NE genes. In LNCaP xenografts, more pronounced castration-induced NEtD was observed in tumors derived from high than low-ADRB2 cells. In conclusion, high ADRB2 expression is required for ADT-induced NEtD, characterized by ADRB2 downregulation and t-NEPC emergence. Implications: This data suggest a potential application of β-blockers to prevent cancer cells committed to a neuroendocrine lineage from evolving into t-NEPC
Identification and validation of leucine-rich α-2-glycoprotein 1 as a noninvasive biomarker for improved precision in prostate cancer risk stratification
Background:
More accurate risk assessments are needed to improve prostate cancer management.
Objective:
To identify blood-based protein biomarkers that provided prognostic information for risk stratification.
Design, Setting, and Participants:
Mass spectrometry was used to identify biomarker candidates from blood, and validation studies were performed in four independent cohorts retrospectively collected between 1988 and 2015.
Outcome Measurements and Statistical Analysis:
The primary outcome objectives were progression-free survival, prostate cancer–specific survival (PCSS), and overall survival. Statistical analyses to assess survival and model performance were performed.
Results and Limitation:
Serum leucine-rich α-2-glycoprotein 1 (LRG1) was found to be elevated in fatal prostate cancer. LRG1 provided prognostic information independent of metastasis and increased the accuracy in predicting PCSS, particularly in the first 3 yr. A high LRG1 level is associated with an average of two-fold higher risk of disease-progression and mortality in both high-risk and metastatic patients. However, our study design, with a retrospective analysis of samples spanning several decades back, limits the assessment of the clinical utility of LRG1 in today’s clinical practice. Thus, independent prospective studies are needed to establish LRG1 as a clinically useful biomarker for patient management.
Conclusions:
High blood levels of LRG1 are unfavourable in newly diagnosed high-risk and metastatic prostate cancer, and LRG1 increased the accuracy of risk stratification of prostate cancer patients.
Patient Summary:
High blood levels of leucine-rich α-2-glycoprotein 1 are unfavourable in newly diagnosed high-risk and metastatic prostate cancer.</p
Lipid degradation promotes prostate cancer cell survival.
Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential